ConCare: Personalized Clinical Feature Embedding via Capturing the Healthcare Context

《ConCare: Personalized Clinical Feature Embedding via Capturing the Healthcare Context》介绍了如何利用时间感知的多通道GRU和注意力机制处理不规则时序的EMR数据,预测患者入院死亡风险。模型考虑了时间间隔的影响和特征间的关系,提高了预测的准确性和可解释性。
摘要由CSDN通过智能技术生成

论文阅读——《ConCare: Personalized Clinical Feature Embedding via Capturing the Healthcare Context》

【这是2020.12投给所里一篇论文速递,搬到CSDN上做个纪念嘿嘿】
本文要给大家分享的是北京大学Liantao Ma等人在AAAI2020发表的一篇关于利用患者的EMR数据预测患者入院死亡风险的论文。从电子病历(Electronic Medical Records, EMR)数据中预测患者的临床结果一直是医疗信息学中一个基础研究问题,在本文中,作者提出ConCare框架,该框架使用时间感知的多通道GRU对EMR数据进行建模,提取不规则时序数据对预测结果的影响。ConCare还引入了多头注意力机制,不仅能有效捕获EMR数据中动态特征与静态基线信息之间的相互依赖关系,还使模型具有很好的可解释性。

背景

EMR数据也就是我们常说的电子病历数据,由患者的一系列历史就诊序列构成。临床输出一般是对患者未来状态的一种预测,比如患者下一阶段的就诊序列,或者特定疾病或任务的风险。在本文中,临床输出为患者入院死亡风险。常用的方法是利用机器学习或者深度学习的手段,对患者的就诊序列进行建模,学习患者的临床就诊嵌入,并利用这个嵌入进行最后的预测任务。但是现有的方法还存在两大问题:
1、如何评估不规则的就诊时间间隔对预测结果影响。
在患者的EMR数据中,每次就诊之间的时间间隔并不是规律的,因为患者一般是身体不舒服了才会去医院进行就诊,所以可能这两次就诊之间只隔了几个星期,下一次就诊却隔了好几

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值