机器学习——评价指标(ACC、SN、SP、MCC、F1-score)

这篇文章介绍了在二分类问题中常用的评估指标,如真正例(TP)、假正例(FP)、真负例(TN)、假负例(FN),以及它们用于计算准确率(ACC)、召回率(SN)、特异度(SP)、精确率(Precision)、马修斯相关系数(MCC)和F1分数(F1-score)的公式。代码示例展示了如何用C++实现这些计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TP、FP、FN、TN

在这里插入图片描述

ACC、SP、SN、Precision、MCC、F1-score

在这里插入图片描述

代码实现

#include <math.h>
double TP = 0, TN = 0, FP = 0, FN = 0;
double SN = 0, SP = 0, MCC = 0, ACC = 0, Precision = 0;
//...
SN = TP / (TP + FN);
SP = TN / (TN + FP);
Precision = TP / (TP + FP);
ACC = (TP + TN) / (TP + TN + FN + FP);
MCC = (TP * TN - FP * FN) / sqrt((TP + FN) * (TP + FP) * (TN + FP) * (TN + FN));
F1 = (2*SN*Precision)/(SN + Precision);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值