Vintage曲线与资产质量的关系

本文通过Vintage曲线分析信贷资产质量,解释了如何确定资产质量、分析变化规律、确定账户成熟期及影响因素,指导风控策略调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在信贷领域中,我们可以用Vintage曲线分析资产质量。

按账龄(MOB)长短对齐后比较,我们可以了解同一产品不同时期放款的资产质量。

1、确定资产质量:一般以逾期率来定义资产质量,也就是曲线平缓后对应的逾期率。
2、分析变化规律:资产质量(例如逾期率指标)的变化情况,如果前几期逾期率上升很快,那么说明短期风险没有捕捉住,欺诈风险较高;反之,如果曲线一直在上升,说明信用风险识别能力不佳。
3、确定账户成熟期:用来判断客户展现好坏的时间因素,从而帮助定义表现期。
4、分析影响因素:风控策略收紧或放松、客群变化、市场环境、政策法规等都会影响资产质量。这些分析,可以用来指导风控策略的调整。

首先,我们来分析为什么要确定账户的表现期?在《风控特征—时间滑窗统计特征体系》一文中,我们提到过:表现期越长,信用风险暴露将越彻底,但意味着观察期离当前越远,用以提取样本特征的历史数据将越陈旧,建模样本和未来样本的差异也越大。反之,表现期越短,风险还未暴露完全,但好处是能用到更近的样本。 观察点、观察期与表现期 例如,对于一个12期分期还款的信贷产品,理论上当用户在12期结束,并还清所有的钱后,我们才能定义为绝对的好客户;反之,我们只能说到目前为止是一个好客户,但并不能知道未来几期用户会不会逾期不还钱。因此,我们需要确定一个合适的表现期,能覆盖足够多的坏客户即可。 某12期信贷产品2018年的Vintage曲线

根据上图信贷产品Vintage曲线,我们可以得到哪些信息呢?

1、账龄最长为12个月,代表产品期限为12期。随着12期结束,账户的生命周期走到尽头。
2、根据2018年5月放贷的订单完全走完账龄生命周期,而2018年6月却没走完,说明数据统计时间为2019年6月初。
3、账龄MOB1、MOB2、MOB3的逾期率都为0,说明逾期指标为M4+(逾期超过90天)风险。
4、由放贷月份从2018年1月~12月的账户的最终逾期率都在降低,说明资产质量在不断提升,可能是因为风控水平在不断提升。
5、2018年5月相对于2018年1~4月的逾期率大幅度下降,说明该阶段风控策略提升明显。
6、不同月份放款的M4+在经过9个MOB后开始趋于稳定,说明账户成熟期是9个月。

绘制Vintage曲线时,就不得不提到纵坐标中逾期率的定义。通常有两种计算口径: 第一种,订单口径,逾期率 = 逾期订单数 / 总放贷订单数 第二种,金额口径,逾期率 = 逾期金额 / 总放贷金额

目前互联网金融各家机构的口径定义存在差异,因此仅仅根据各家发布的Vintage曲线,有时并不能客观分析资产质量和风控水平。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值