深蓝学院-概率图模型-第二章

本文概述了概率图的基础知识,包括条件概率、独立性(包括变量独立性和条件独立性)、贝叶斯网络的定义及其利用图结构简化模型的方法,还介绍了马尔可夫随机场的局部势函数与边缘概率的关系以及在图像处理中的应用。
摘要由CSDN通过智能技术生成

概率论与图论基础知识

条件概率

P(A|B)=P(AB)/P(B)
乘法公式

  • 若P(B)>0,则P(AB) = P(B)P(A|B)
  • 若P(A)>0,则P(AB) = P(A)P(B|A)

全概率公式

  • P ( A ) = ∑ i = 1 n P ( A B i ) P(A) = \sum_{i=1}^{n}P(AB_i) P(A)=i=1nP(ABi)

直接计算P(A)比较困难,则根据B样本空间对事件A进行分割求解
贝叶斯公式
定义:若事件 B 1 , B 2 . . . . . . B n B_1,B_2......B_n B1,B2......Bn是样本空间 α \alpha α的一组分割,且P(A)>0,P( B i B_i Bi)>0,则
P ( B i ∣ A ) = P ( A B i ) P ( A ) = P ( B i ) P ( A ∣ B i ) P ( A ) = P ( B i ) P ( A ∣ B i ) ) ∑ j = 1 n P ( B j ) P ( A ∣ B j ) P(B_i|A)=\frac{P(AB_i)}{P(A)}=\frac{P(B_i)P(A|B_i)}{P(A)}=\frac{P(B_i)P(A|B_i))}{\sum_{j=1}^{n}P(B_j)P(A|B_j)} P(BiA)=P(A)P(ABi)=P(A)P(Bi)P(ABi)=j=1nP(Bj)P(ABj)P(Bi)P(ABi))
P ( B i ) P(B_i) P(Bi)是先验概率 P ( B i ∣ A ) P(B_i|A) P(BiA)是后验概率

独立性

定义 若事件A与B满足: P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B),则称A与B相互独立

  • P ( A ∣ B ) = P ( A ) P(A|B)=P(A) P(AB)=P(A)
  • P ( A B ) / P ( B ) = P ( A ) P(AB)/P(B)=P(A) P(AB)/P(B)=P(A)
  • P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)

条件独立性

定义 :在给定C的条件下,若事件A与B满足 P ( A B ∣ C ) = P ( A ∣ C ) P ( B ∣ C ) P(AB|C)=P(A|C)P(B|C) P(ABC)=P(AC)P(BC),则称A与B在给定C的条件下相互独立
在这里插入图片描述

概率图模型常用概念

  • 联合概率分布: P ( X ) = P ( X 1 , X 2 , . . . . X N ) P(X) = P(X_1,X_2,....X_N) P(X)=P(X1,X2,....XN)
  • 边缘概率: P ( X α ) = ∑ X / X α P ( X ) P(X_\alpha ) = \sum_{X/ X_\alpha}^{}P(X) P(Xα)=X/XαP(X)
  • 最大后验概率:(MAP) X ∗ = a r g m a x X^* = argmax X=argmax
    eg:

图论基础

  • 图定义:由节点组成的抽象网络,网络中的各节点通过边实现彼此的链接
  • 节点:表示事物、对象或者随机变量
  • 边:表示随机变量之间的关系
  • 有向图与无向图:边是否有方向
  • 树状图:不包含圈的图称为无圈图(acycclic graph),连同的无圈图称为树

贝叶斯网络

 利用图的结构降低模型的复杂度

定义

 令G为定义在{ X 1 , X 2 , . . . . . X N X_1,X_2,.....X_N X1X2,.....XN}上的一个贝叶斯网络,其联合概率分布可以表示为各个节点的条件概率分布的乘积:
p ( X ) = ∏ i p i ( X i ∣ Par ⁡ G ( X i ) ) p(X)=\prod_{i} p_{i}\left(X_{i} \mid \operatorname{Par}_{G}\left(X_{i}\right)\right) p(X)=ipi(XiParG(Xi))
其中 Par ⁡ G ( X i ) \operatorname{Par}_{G}\left(X_{i}\right) ParG(Xi)表示在图G上,节点 X i X_i Xi的父节点, p i ( X i ∣ Par ⁡ G ( X i ) ) p_{i}\left(X_{i} \mid \operatorname{Par}_{G}\left(X_{i}\right)\right) pi(XiParG(Xi))为节点 X i X_i Xi的条件概率表
eg:

联合概率分布
P ( D , I , S , G , L ) = P ( D ) P ( I ) P ( G ∣ D , I ) P ( S ∣ I ) P ( L ∣ G ) P(D,I,S,G,L) = P(D)P(I)P(G|D,I)P(S|I)P(L|G) P(D,I,S,G,L)=P(D)P(I)P(GD,I)P(SI)P(LG)

变量独立性

 随机变量X,Y相互独立,满足以下三个条件,反之,如果满足以下三个条件的任意一个,则相互独立
P ( X , Y ) = P ( X ) P ( Y ) P ( X ∣ Y ) = P ( X ) P ( Y ∣ X ) = P ( Y ) P(X,Y)=P(X)P(Y) \\ P(X|Y)=P(X) \\ P(Y|X)=P(Y) \\ P(X,Y)=P(X)P(Y)P(XY)=P(X)P(YX)=P(Y)
 随机变量X,Y,Z在给定的Z的条件下独立,满足以下三个条件,反之,如果满足以下三个条件的任意一个,则相互独立
P ( X , Y ∣ Z ) = P ( X ∣ Z ) P ( Y ∣ Z ) P ( X ∣ Y , Z ) = P ( X , Z ) P ( Y ∣ X , Z ) = P ( Y , Z ) P(X,Y|Z) = P(X|Z)P(Y|Z) \\ P(X|Y,Z) = P(X,Z) \\ P(Y|X,Z) = P(Y,Z) P(X,YZ)=P(XZ)P(YZ)P(XY,Z)=P(X,Z)P(YX,Z)=P(Y,Z)

概率影响流动性

  • 在一定的观测条件下,变量间的取值概率是否会相互影响
  • 观测变量:变量取值可观测,或变量取值已经确定
  • 隐变量:变量取值未知,通常根据观测变量取值,进行推理在这里插入图片描述
    定义:(有效迹)对于贝叶斯网络中的一条迹(路径) X 1 ⇌ . . . X n X_1\rightleftharpoons ...X_n X1...Xn和观测变量的子集 Z Z Z,当 X 1 和 X n X_1和X_n X1Xn的取值能够相互影响时,称路径是有效的,反之,若二者不能相互影响,则称 X 1 和 X n X_1和X_n X1Xn条件独立
    在这里插入图片描述
    定义(d-分离):若图G在给定Z条件,节点X和Y之间不存在任何有效迹,则称X和Y在给定Z时是d-分离的,记为 d − s e p G ( X , Y ∣ Z ) d-sep_G(X,Y|Z) dsepG(X,YZ)

贝叶斯网络中的独立性

在这里插入图片描述
eg:对于节点S,其父节点是I,则S与D、G、L都条件独立
在这里插入图片描述
条件独立:意味着两个变量之间没有任何关联,事件A发生的概率与B发不发生没有任何关系
上图中, P ( L ∣ G ) P(L|G) P(LG)表示在给定G的情况下,L和I,D无关; P ( S ∣ I ) P(S|I) P(SI)表示在给定I的情况下,S与D、G、L条件独立

贝叶斯网络推断

因果推断:顺着箭头推断
证据推断:逆向箭头推断
交叉因果推断:双向箭头推断

马尔可夫随机场

  • 马尔可夫随机场(Markov Random Field,MRF)是无向概率图模型,其概率分布可以表示为:
    P ( x 1 , . . . . . x n ) = 1 Z Φ ∏ i = 1 ϕ i ( D i ) P(x_1,.....x_n) = \frac{1}{Z_\Phi }\prod_{i=1}^{}\phi_i(D_i) P(x1,.....xn)=ZΦ1i=1ϕi(Di)
    上式中, Z ϕ Z_\phi Zϕ为联合概率分布的归一化因子,称为配分函数, D i D_i Di是随机变量的集合, ϕ i ( D i ) \phi_i(D_i) ϕi(Di)是随机变量到实数域的一个映射,称为势函数或者因子
    在这里插入图片描述

  • 上式中 Z Φ Z_\Phi ZΦ就等于中间列因子乘积的累加和

  • D i D_i Di表示四个因子,每个因子有两个变量,分别是A,B、B,C、C,D、D,A

  • ϕ i ( D i ) \phi_i(D_i) ϕi(Di)表示的是第i个因子对应的参数矩阵,局部势函数

局部势函数和边缘概率的关系

 局部势函数和边缘概率没有直接的联系,他们是部分和整体的关系,联合概率和边缘概率需要考虑所有变量之间的依赖关系,而局部势函数只考虑因子所包含的变量
在这里插入图片描述
节点势函数可以根据问题建模的需要,决定是否引入,具有灵活性
在这里插入图片描述

应用举例

 在计算机视觉和图像处理领域,成对马尔可夫随机场(Pairwise MRF)被广泛应用
成对 M R F 的联合概率: 1 Z Φ ∏ p ∈ V ϕ p ( x p ) ∏ ( p , q ) ∈ E ϕ p q ( x p , x q ) 成对MRF的联合概率:\frac{1}{Z_\Phi }\prod_{p\in V}^{} \phi_p(x_p)\prod_{(p,q)\in E}^{}\phi_{pq} (x_p,x_q) 成对MRF的联合概率:ZΦ1pVϕp(xp)(p,q)Eϕpq(xp,xq)
上式表示节点势函数的连乘积 x 边上的势函数的连乘积
第一个V表示马尔可夫随机场节点的集合
第二个E表示马尔可夫随机场所有的集合

利用成对MRF对图像处理问题建模

图像处理问题转为定义在MRF上的最大概率后验问题
m a x x p ( x ) ∝ ∏ p ∈ V ϕ p ( x p ) ∏ ( p , q ) ∈ E ϕ p q ( x p , x q ) \mathop{max}\limits_{x} p(x) \propto \prod_{p\in V}^{} \phi_p(x_p)\prod_{(p,q)\in E}^{}\phi_{pq} (x_p,x_q) xmaxp(x)pVϕp(xp)(p,q)Eϕpq(xp,xq)
在这里插入图片描述
当令 θ p ( x p ) = − l o g ϕ p ( x p ) , θ p q ( x p , x q ) = − l o g ϕ p q ( x p , x q ) \theta_p(x_p) = -log\phi_p(x_p),\theta_{pq}(x_p,x_q)=-log\phi_{pq}(x_p,x_q) θp(xp)=logϕp(xp),θpq(xp,xq)=logϕpq(xp,xq)
最大后验概率推理问题就能转换成能量最小化问题:
m i n x E ( x ) = ∑ p ∈ V θ p ( x p ) + ∑ ( p , q ) ∈ E θ p q ( x p , x q ) \mathop{min}\limits_{x} E(x) = \sum_{p\in V}^{}\theta_p(x_p) + \sum_{(p,q)\in E}\theta_{pq}(x_p,x_q) xminE(x)=pVθp(xp)+(p,q)Eθpq(xp,xq)
在这里插入图片描述
能量函数参数化
在这里插入图片描述

因子图

贝叶斯网络和MRF都可以用因子图来表示
定义:因子图是一类无向概率图模型,包括变量节点和因子节点。变量节点和因子节点之间有无向边相连。与某个因子节点相连接的变量节点,为该因子的变量。定义在因子图上的联合概率分布可以表示为各个因子的联乘积

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摸鱼带师小弟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值