VIO深蓝学院第五章PPT以及作业

本文档涵盖了VIO深蓝学院第五章的学习内容,主要讨论了LM算法的推导、视觉重投影误差和雅可比矩阵的计算。此外,还提出了关于加先验、更新先验残差以及泰勒近似的疑问,并探讨了testmarginalation中的难点。目前,第五章的提高作业仍在进行中。
摘要由CSDN通过智能技术生成

一. 关于LM算法的推导,视觉重投影误差以及雅可比矩阵的推导,以及常用重投影问题的搭建具体步骤参见以下网址:(属于第五章前一部分作业)

LM算法推导_AutoGalaxy的博客-CSDN博客

二. 

关于这里存在的疑问:为什么fix不是通过设定fix参数,禁止优化呢? 

 加先验是什么意思呢?为什么称为加先验?

三. 更新先验残差如何进行?

下面这种泰勒近似如何体现?

 四. 在testmarginalation中

以下部分看的不是特别懂。


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值