GAN对抗网络

写在前面

GAN 这个网络,让我发现了真的做机器学习一定要配备一台gpu,不然后面庞大的数据量会把自己跑到绝望!它在跑只是一直都很慢!
后面的演示代码是用GPU写的但是同时也兼容CPU,没有GPU的电脑很容易和我一样跑个寂寞!

简单介绍

官方介绍

生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。原始 GAN 理论中,并不要求 G 和 D 都是神经网络,只需要是能拟合相应生成和判别的函数即可。但实用中一般均使用深度神经网络作为 G 和 D 。一个优秀的GAN应用需要有良好的训练方法,否则可能由于神经网络模型的自由性而导致输出不理想。反正我看完懵了!(来自百度百科)

用我自己的语言介绍一下GAN

GAN说通俗点就是一种造假器,目的很简单以假乱真!生成目标对象!核心就是生成器(Generative Model)和判决器(Discriminative Model),类似假币制作公司和银行点钞机的关系。
在这里插入图片描述

造假公司的目的就是造一张一模一样的100元!但是这家公司刚起步没有啥经验!于是它搞出了这个(这个叫做生成器)

(真的没找到图片,这个图一乐吧)然后银行的点钞机上线,它的工作就是把假币辨别出来然后一脚踢出去(这个叫做判决器)
造假公司(生成器)的任务是做出更高质量假币蒙骗银行的点钞机,使点钞机(判决器)判决能力下降,达到蒙混过关的目的!
银行的点钞机(判决器)一步一步的更新换代,提高自己的判决能力,辨别出那些更高质量的假币!

当造假公司造的假币,银行的最新的点钞机都辨认不出来了,整个过程完成了,GAN对抗网络就会生成一个很细节的高仿品。

下面是实现代码

用GAN对抗网络生成一个类似的MNIST手写图片

import argparse
import os
import numpy as np
import math

import torchvision.transforms as transforms
from torchvision.utils import save_image

from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable

import torch.nn as nn
import torch.nn.functional as F
import torch

os.makedirs("images", exist_ok=True)

parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)

img_shape = (opt.channels, opt.img_size, opt.img_size)  # 确定图片输入的格式为(1,28,28),由于mnist数据集是灰度图所以通道为1
cuda = True if torch.cuda.is_available() else False


class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *block(opt.latent_dim, 128, normalize=False),
            *block(128, 256),
            *block(256, 512),
            *block(512, 1024),
            nn.Linear(1024, int(np.prod(img_shape))),
            nn.Tanh()
        )

    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), *img_shape)
        return img


class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid(),
        )

    def forward(self, img):
        img_flat = img.view(img.size(0), -1)
        validity = self.model(img_flat)
        return validity


# Loss function
adversarial_loss = torch.nn.BCELoss()

# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()

if cuda:
    generator.cuda()
    discriminator.cuda()
    adversarial_loss.cuda()

# Configure data loader
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST(
        "../../data/mnist",
        train=True,
        download=True,
        transform=transforms.Compose(
            [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
        ),
    ),
    batch_size=opt.batch_size,
    shuffle=True,
)

# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

# ----------
#  Training
# ----------
if __name__ == '__main__':
    for epoch in range(opt.n_epochs):
        for i, (imgs, _) in enumerate(dataloader):
            # print(imgs.shape)
            # Adversarial ground truths
            valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False)  # 全1
            fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False)  # 全0
            # Configure input
            real_imgs = Variable(imgs.type(Tensor))

            # -----------------
            #  Train Generator
            # -----------------

            optimizer_G.zero_grad()  # 清空G网络 上一个batch的梯度

            # Sample noise as generator input
            z = Variable(
                Tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))))  # 生成的噪音,均值为0方差为1维度为(64,100)的噪音
            # Generate a batch of images
            gen_imgs = generator(z)
            # Loss measures generator's ability to fool the discriminator
            g_loss = adversarial_loss(discriminator(gen_imgs), valid)

            g_loss.backward()  # g_loss用于更新G网络的权值,g_loss于D网络的判断结果 有关
            optimizer_G.step()

            # ---------------------
            #  Train Discriminator
            # ---------------------

            optimizer_D.zero_grad()  # 清空D网络 上一个batch的梯度
            # Measure discriminator's ability to classify real from generated samples
            real_loss = adversarial_loss(discriminator(real_imgs), valid)
            fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
            d_loss = (real_loss + fake_loss) / 2

            d_loss.backward()  # d_loss用于更新D网络的权值
            optimizer_D.step()

            print(
                "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
                % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item())
            )

            batches_done = epoch * len(dataloader) + i
            if batches_done % opt.sample_interval == 0:
                save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5,
                           normalize=True)  # 保存一个batchsize中的25张
            if (epoch + 1) % 2 == 0:
                print('save..')
                torch.save(generator, 'g%d.pth' % epoch)
                torch.save(discriminator, 'd%d.pth' % epoch)

一共200x938,共计187600条数据。没有用CUDA加速的话,跑几条看看就行了啊!强跑真的容易跑个寂寞!跑出来的结果应该是没有问题的,一个记录了数字的方阵!
是不是感觉完了!其实并没有噢!拒绝划水,下面是GAN工作原理分析!

GAN工作原理分析

写死一端,优化另一端,先写死判决器,来不断的更新生成器,当生成器已经能够欺骗判决器,开始写活判决器,又开始新的一轮的写死判决器,更新生成器,每一次的生成图片比上一轮的质量较优,一轮一轮的博弈,直到最终生成器和判决器完全一致的时候结束GAN对抗网络!
ps.GAN网络模型目前我也只了解一小快,如果有问题还请大家批评指教,我们一起成长。(先说一句谢谢)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值