联邦学习
文章平均质量分 92
向大蒜
怎么有人不爱大蒜!
展开
-
[论文阅读|异步FL]Asynchronous Wireless Federated Learning with Probabilistic Client Selection
从图 9 可以看出,在场景 1 中,贪心方案多次选择极度分布的客户端,而在场景 2 中,极度分布的客户端被完全忽略,说明贪心方案只会天真地选择通道条件好的客户端,从而导致客户端参与不公平,使全局模型向局部最优漂移。先对给定 (α, β, γ) 的内层凸问题(P3)和(P4)进行最优解,然后用改进的牛顿法求解外层问题,其中两层问题在一个循环中交替求解,最终得到问题(P2)的全局最优解。当(α, β, γ) = (α, β, γ)时,问题(P1)和问题(P2)具有相同的最优解(p∗,w∗)。原创 2024-07-11 20:10:19 · 881 阅读 · 1 评论 -
【论文笔记|异步联邦】Time-Sensitive Learning for Heterogeneous Federated Edge Intelligence
本文解决方案与最近的工作比较,表V,给出了在两个不同的数据集MNIST和交通数据下,使用我们提出的解决方案和[34]中提出的基于调度的方法,模型训练过程的总体耗时,在场景(a)和(d)中,目标模型精度分别为83.30%和80.43%。我们考虑手写数字数据集,并假设每个边缘服务器只有与单个数字相关的数据样本,而三个低性能边缘服务器(即离散者(树莓派3a))的数据样本与非唯一数字相关,即存在其他边缘服务器(树莓派4B)具有相同数字的数据样本。本文的目标:在保证模型训练精度的同时,最小化训练时间。原创 2024-07-08 09:44:45 · 1059 阅读 · 1 评论 -
【论文阅读|异步联邦】HiFlash: Communication-Efficient Hierarchical Federated Learning With Adaptive Staleness
在同一局域网 LAN 环境下,模型训练精度高,收敛速度快,更需要在边缘节点和客户端之间进行同步模型聚合在复杂的广域网 WAN 环境下,云端的模型训练存在通信瓶颈(不同边缘的客户端大小不同,远程传输时间波动很大,边缘模型聚合时间也不同),有严重的掉队问题。采用异步聚合减少中心服务器和边缘节点之间模型更新的等待时间,缓解掉队问题。原创 2024-06-14 11:18:34 · 1141 阅读 · 1 评论 -
【论文阅读 |异步联邦】GitFL: Uncertainty-Aware Real-Time Asynchronous Federated Learning using Version Control
一句话总结:模仿 git 实现版本控制,利用 DRL 实现客户选择,平衡分支模型的版本,解决全局模型不能充分地从掉队者那里学习知识的问题。原创 2024-06-01 11:07:27 · 725 阅读 · 0 评论 -
【论文阅读 | 异步联邦】FedLC: Accelerating Asynchronous Federated Learning in Edge Computing
考虑计算、通信资源限制,利用 需求列表动态选择 k 个进行交互的设备 ,最大效益 实现在 边缘设备间 的 本地协作原创 2024-05-24 22:06:02 · 451 阅读 · 0 评论 -
【论文阅读 | 异步联邦】Adaptive Asynchronous Federated Learning in Resource-Constrained Edge Computing
考虑带宽资源限制,自适应的调整每个训练周期中参与全局模型聚合的本地更新模型的比例 at。原创 2024-05-18 16:30:41 · 880 阅读 · 0 评论 -
【论文笔记 | 异步联邦】FedSA
FedSA:一种处理的异步联邦算法。原创 2024-05-08 20:24:48 · 1804 阅读 · 1 评论 -
【论文笔记 | 异步联邦】PORT:How Asynchronous can Federated Learning Be?
现有的异步FL文献中设计的启发式方法都只反映设计空间中的点解决方案,并且在一些情况下未能激励他们的设计选择。由于测量训练时间的随机性,在PLATO中没有激活可重复性模式,PORT 和 FedBuff 等竞争对手之间的比较可能会因不同的数据集和运行而有所不同。最后,当服务器聚合迄今为止接收到的模型更新时(这些更新本质上是基于不同的全局模型的),服务器应该如何将聚合权重分配给每个客户机。因此,不能清楚在冲突的设计决策之间的最佳权衡是什么,以及在同步和异步机制之间的整个范围内的最佳点是什么。原创 2024-04-26 22:27:17 · 1506 阅读 · 0 评论 -
【论文笔记 | 异步联邦】 FedBuff
最优的服务器学习率随着并发性的增加而增加,高并发性意味着对更多用户进行聚合,这样能够减少方差,使服务器“迈出”更大的步,减少达到目标精度所需的轮数。同步 FL ,随训练过程中的客户端数量的增多,模型性能 和 训练速度 的收益 会下降,类似于大批量训练;每次客户端更新完成都强制服务器更新,这样的聚合方式不满足安全聚合的条件,此外,在AsyncFL中提供用户级DP仅适用于本地差分隐私(LDP),其中客户端剪辑模型更新并在将其发送到 Server 之前在本地添加噪声。用三种不同的种子重复每个实验,并取平均值。原创 2024-04-22 16:06:51 · 1120 阅读 · 0 评论 -
【论文笔记 | 异步联邦】Asynchronous Federated Optimization
Asynchronous Federated Optimization,OPT2020: 12th Annual Workshop on Optimization for Machine Learning,不属于ccfa。原创 2024-04-16 16:49:29 · 1407 阅读 · 0 评论 -
【论文笔记 | 异步联邦】FedASMU: Efficient Asynchronous Federated Learning with Dynamic Staleness-Aware Model
The intelligent time slot selector 由 Server 的 元模型 和 每个设备上的本地模型 组成,元模型为每个设备生成初始时隙决策,并在设备执行第一次局部训练时更新。培训过程由多个全局轮次组成。θt 表示元模型第 t 次更新后元模型中的参数,ηRL表示 RL 训练过程的学习率,L 表示本地 epoch 的最大次数,∫L 对应第 L。o 为全局模型的版本,l 为局部 epoch 个数,ηi 为设备 i 上的学习率,∇Fi(·) 为基于 Di 中无偏采样的小批 ζl−1。原创 2024-04-11 19:01:43 · 961 阅读 · 0 评论 -
Federated Optimization in Heterogeneous Networks —— Fedprox算法
系统异构性:实验设定了局部迭代轮次E=20,再将低于E的轮次随机的分配0%,50%,90%的客户端。论文对你的启发,包括但不限于解决某个问题的技术、该论文方法的优缺点、实验设计、源码积累等。一个大的μ 会迫使更新接近起始点,减缓收敛速度,小的μ 可能不会产生任何影响。影响收敛性的关键参数为:局部迭代轮数E,是否加入近端项𝜇≠0。统计异构性:规定固定的迭代轮次E(保证系统不异构)原创 2024-01-26 13:43:46 · 698 阅读 · 0 评论