数学基础:向量求导整理

0矩阵求导网站(不包括叉乘和点乘求导)

http://www.matrixcalculus.org/

1标量对向量求导

标量(分子)分别对行/列向量(分母)各元素求导,结果仍为行/列向量(维度与分母一致)。
定义行向量: y T = ( y 1 , y 2 , y 3 ) {{y}^{T}}=({{y}_{1}},{{y}_{2}},{{y}_{3}}) yT=(y1,y2,y3) ;列向量: x = ( x 1 , x 2 , y 3 ) T x={{({{x}_{1}},{{x}_{2}},{{y}_{3}})}^{T}} x=(x1,x2,y3)T ;标量: c c c
标量对行向量求导: d c d y T = ( d c d y 1 d c d y 2 d c d y 3 ) \frac{dc}{d{{y}^{T}}}=\left( \begin{matrix} \frac{dc}{d{{y}_{1}}} & \frac{dc}{d{{y}_{2}}} & \frac{dc}{d{{y}_{3}}} \\ \end{matrix} \right) dyTdc=(dy1dcdy2dcdy3dc)
标量对列向量求导: d c d x = ( d c d x 1 d c d x 2 d c d x 3 ) T \frac{dc}{dx}={{\left( \begin{matrix} \frac{dc}{d{{x}_{1}}} & \frac{dc}{d{{x}_{2}}} & \frac{dc}{d{{x}_{3}}} \\ \end{matrix} \right)}^{T}} dxdc=(dx1dcdx2dcdx3dc)T

2向量对向量求导

向量(分子)的各个元素分别对行/列向量(分母)各元素求导,结果仍为行/列向量(维度与分母一致),再将各个行/列向量按照分子向量的维度排列。
定义1×m维行向量: y T = ( y 1 y 2 ⋯ y m ) {{y}^{T}}=\left( \begin{matrix} {{y}_{1}} & {{y}_{2}} & \cdots & {{y}_{m}} \\ \end{matrix} \right) yT=(y1y2ym) ;n×1维列向量: x = ( x 1 x 2 ⋯ x n ) T x={{\left( \begin{matrix} {{x}_{1}} & {{x}_{2}} & \cdots & {{x}_{n}} \\ \end{matrix} \right)}^{T}} x=(x1x2xn)T
行向量对列向量求导: d y T d x = ( d y 1 d x 1 d y 2 d x 1 ⋯ d y m d x 1 d y 1 d x 2 d y 2 d x 2 ⋯ d y m d x 2 ⋮ ⋮ ⋯ ⋮ d y 1 d x n d y 2 d x n ⋯ d y m d x n ) \frac{d{{y}^{T}}}{dx}=\left( \begin{matrix} \frac{d{{y}_{1}}}{d{{x}_{1}}} & \frac{d{{y}_{2}}}{d{{x}_{1}}} & \cdots & \frac{d{{y}_{m}}}{d{{x}_{1}}} \\ \frac{d{{y}_{1}}}{d{{x}_{2}}} & \frac{d{{y}_{2}}}{d{{x}_{2}}} & \cdots & \frac{d{{y}_{m}}}{d{{x}_{2}}} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{d{{y}_{1}}}{d{{x}_{n}}} & \frac{d{{y}_{2}}}{d{{x}_{n}}} & \cdots & \frac{d{{y}_{m}}}{d{{x}_{n}}} \\ \end{matrix} \right) dxdyT=dx1dy1dx2dy1dxndy1dx1dy2dx2dy2dxndy2dx1dymdx2dymdxndym
列向量对行向量求导: d y d x T = ( d y 1 d x 1 d y 1 d x 2 ⋯ d y 1 d x n d y 2 d x 1 d y 2 d x 2 ⋯ d y 2 d x n ⋮ ⋮ ⋯ ⋮ d y m d x 1 d y m d x 2 ⋯ d y m d x n ) \frac{dy}{d{{x}^{T}}}=\left( \begin{matrix} \frac{d{{y}_{1}}}{d{{x}_{1}}} & \frac{d{{y}_{1}}}{d{{x}_{2}}} & \cdots & \frac{d{{y}_{1}}}{d{{x}_{n}}} \\ \frac{d{{y}_{2}}}{d{{x}_{1}}} & \frac{d{{y}_{2}}}{d{{x}_{2}}} & \cdots & \frac{d{{y}_{2}}}{d{{x}_{n}}} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{d{{y}_{m}}}{d{{x}_{1}}} & \frac{d{{y}_{m}}}{d{{x}_{2}}} & \cdots & \frac{d{{y}_{m}}}{d{{x}_{n}}} \\ \end{matrix} \right) dxTdy=dx1dy1dx1dy2dx1dymdx2dy1dx2dy2dx2dymdxndy1dxndy2dxndym
由上述两个公式可知: d y T d x = ( d y d x T ) T \frac{d{{y}^{T}}}{dx}={{\left( \frac{dy}{d{{x}^{T}}} \right)}^{T}} dxdyT=(dxTdy)T
行向量对行向量求导: d y T d x T = ( d y 1 d x 1 ⋯ d y 1 d x n d y 2 d x 1 ⋯ d y 2 d x m ⋯ d y m d x 1 ⋯ d y m d x n ) \frac{d{{y}^{T}}}{d{{x}^{T}}}=\left( \begin{matrix} \frac{d{{y}_{1}}}{d{{x}_{1}}} & \cdots & \frac{d{{y}_{1}}}{d{{x}_{n}}} & \frac{d{{y}_{2}}}{d{{x}_{1}}} & \cdots & \frac{d{{y}_{2}}}{d{{x}_{m}}} & \cdots & \frac{d{{y}_{m}}}{d{{x}_{1}}} & \cdots & \frac{d{{y}_{m}}}{d{{x}_{n}}} \\ \end{matrix} \right) dxTdyT=(dx1dy1dxndy1dx1dy2dxmdy2dx1dymdxndym)
列向量对列向量求导: d y d x = ( d y 1 d x 1 ⋯ d y 1 d x n d y 2 d x 1 ⋯ d y 2 d x m ⋯ d y m d x 1 ⋯ d y m d x n ) T \frac{dy}{dx}={{\left( \begin{matrix} \frac{d{{y}_{1}}}{d{{x}_{1}}} & \cdots & \frac{d{{y}_{1}}}{d{{x}_{n}}} & \frac{d{{y}_{2}}}{d{{x}_{1}}} & \cdots & \frac{d{{y}_{2}}}{d{{x}_{m}}} & \cdots & \frac{d{{y}_{m}}}{d{{x}_{1}}} & \cdots & \frac{d{{y}_{m}}}{d{{x}_{n}}} \\ \end{matrix} \right)}^{T}} dxdy=(dx1dy1dxndy1dx1dy2dxmdy2dx1dymdxndym)T

3向量对向量求导与雅可比矩阵的联系(参考百度百度)

雅可比矩阵定义:假设 F : R n → R m F:{{\mathbf{R}}_{n}}\to {{\mathbf{R}}_{m}} F:RnRm是一个将n维欧氏空间映射到m维欧氏空间的函数。这个函数由m个实函数组成: y 1 ( x 1 , x 2 , ⋯   , x n ) {{y}_{1}}({{x}_{1}},{{x}_{2}},\cdots ,{{x}_{n}}) y1(x1,x2,,xn) y 2 ( x 1 , x 2 , ⋯   , x n ) {{y}_{2}}({{x}_{1}},{{x}_{2}},\cdots ,{{x}_{n}}) y2(x1,x2,,xn),…, y m ( x 1 , x 2 , ⋯   , x n ) {{y}_{m}}({{x}_{1}},{{x}_{2}},\cdots ,{{x}_{n}}) ym(x1,x2,,xn) 。这些函数的偏导数(如果存在)可以组成一个m行n列的矩阵,这个矩阵就是所谓的雅可比矩阵:
( d y 1 d x 1 d y 1 d x 2 ⋯ d y 1 d x n d y 2 d x 1 d y 2 d x 2 ⋯ d y 2 d x n ⋮ ⋮ ⋯ ⋮ d y m d x 1 d y m d x 2 ⋯ d y m d x n ) \left( \begin{matrix} \frac{d{{y}_{1}}}{d{{x}_{1}}} & \frac{d{{y}_{1}}}{d{{x}_{2}}} & \cdots & \frac{d{{y}_{1}}}{d{{x}_{n}}} \\ \frac{d{{y}_{2}}}{d{{x}_{1}}} & \frac{d{{y}_{2}}}{d{{x}_{2}}} & \cdots & \frac{d{{y}_{2}}}{d{{x}_{n}}} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{d{{y}_{m}}}{d{{x}_{1}}} & \frac{d{{y}_{m}}}{d{{x}_{2}}} & \cdots & \frac{d{{y}_{m}}}{d{{x}_{n}}} \\ \end{matrix} \right) dx1dy1dx1dy2dx1dymdx2dy1dx2dy2dx2dymdxndy1dxndy2dxndym,记作 J F ( x 1 , x 2 , ⋯   , x n ) {{J}_{F}}({{x}_{1}},{{x}_{2}},\cdots ,{{x}_{n}}) JF(x1,x2,,xn) ∂ ( y 1 , y 2 , ⋯   , y m ) ∂ ( x 1 , x 2 , ⋯   , x n ) \frac{\partial ({{y}_{1}},{{y}_{2}},\cdots ,{{y}_{m}})}{\partial ({{x}_{1}},{{x}_{2}},\cdots ,{{x}_{n}})} (x1,x2,,xn)(y1,y2,,ym)。这个矩阵的第i行是 y i ( i = 1 , 2 , ⋯ m ) {{y}_{i}}(i=1,2,\cdots m) yi(i=1,2,m)的梯度函数的转置。
例如 R 3 → R 4 {{\mathbf{R}}_{3}}\to {{\mathbf{R}}_{4}} R3R4的一个函数: y 1 = x 1 , y 2 = 5 x 3 , y 3 = 4 x 2 2 − 2 x 3 , y 4 = x 3 sin ⁡ x 1 {y_1} = {x_1},{y_2} = 5{x_3},{y_3} = 4x_2^2 - 2{x_3},{y_4} = {x_3}\sin {x_1} y1=x1,y2=5x3,y3=4x222x3,y4=x3sinx1,它的雅可比矩阵为: J F = ( d y 1 d x 1 d y 1 d x 2 d y 1 d x 3 d y 2 d x 1 d y 2 d x 2 d y 2 d x 3 d y 3 d x 1 d y 3 d x 2 d y 3 d x 3 d y 4 d x 1 d y 4 d x 2 d y 4 d x 3 ) = ( 1 0 0 0 0 5 0 8 x 2 − 2 x 3 cos ⁡ x 1 0 sin ⁡ x 1 ) {{J}_{F}}=\left( \begin{matrix} \frac{d{{y}_{1}}}{d{{x}_{1}}} & \frac{d{{y}_{1}}}{d{{x}_{2}}} & \frac{d{{y}_{1}}}{d{{x}_{3}}} \\ \frac{d{{y}_{2}}}{d{{x}_{1}}} & \frac{d{{y}_{2}}}{d{{x}_{2}}} & \frac{d{{y}_{2}}}{d{{x}_{3}}} \\ \frac{d{{y}_{3}}}{d{{x}_{1}}} & \frac{d{{y}_{3}}}{d{{x}_{2}}} & \frac{d{{y}_{3}}}{d{{x}_{3}}} \\ \frac{d{{y}_{4}}}{d{{x}_{1}}} & \frac{d{{y}_{4}}}{d{{x}_{2}}} & \frac{d{{y}_{4}}}{d{{x}_{3}}} \\ \end{matrix} \right)=\left( \begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 5 \\ 0 & 8{{x}_{2}} & -2 \\ {{x}_{3}}\cos {{x}_{1}} & 0 & \sin {{x}_{1}} \\ \end{matrix} \right) JF=dx1dy1dx1dy2dx1dy3dx1dy4dx2dy1dx2dy2dx2dy3dx2dy4dx3dy1dx3dy2dx3dy3dx3dy4=100x3cosx1008x20052sinx1
有关雅可比矩阵的详细内容请参考网址:http://jacoxu.com/jacobian%E7%9F%A9%E9%98%B5%E5%92%8Chessian%E7%9F%A9%E9%98%B5/.

4向量的点积(点乘)和叉积(叉乘)对向量求导(以对列向量求导为例)

定义m×1维列向量: u = ( u 1 u 2 ⋯ u m ) T u={{\left( \begin{matrix} {{u}_{1}} & {{u}_{2}} & \cdots & {{u}_{m}} \\ \end{matrix} \right)}^{T}} u=(u1u2um)T v = ( v 1 v 2 ⋯ v m ) T v={{\left( \begin{matrix} {{v}_{1}} & {{v}_{2}} & \cdots & {{v}_{m}} \\ \end{matrix} \right)}^{T}} v=(v1v2vm)T
定义n×1维列向量: w = ( w 1 w 2 ⋯ w n ) T w={{\left( \begin{matrix} {{w}_{1}} & {{w}_{2}} & \cdots & {{w}_{n}} \\ \end{matrix} \right)}^{T}} w=(w1w2wn)T
点乘对列向量求导:
d ( u ⋅ v ) d w = d ( v T u ) d w = d u T d w ⋅ v + d v T d w ⋅ u \frac{{d\left( {u \cdot v} \right)}}{{dw}} = \frac{{d\left( {{v^T}u} \right)}}{{dw}} = \frac{{d{u^T}}}{{dw}} \cdot v + \frac{{d{v^T}}}{{dw}} \cdot u dwd(uv)=dwd(vTu)=dwduTv+dwdvTu
例1: w = u w=u w=u
d ( u ⋅ v ) d u = d ( v T u ) d u = d ∑ u i v i d u = ( d ∑ u i v i d u 1 d ∑ u i v i d u 2 ⋯ d ∑ u i v i d u m ) T = ( v 1 v 2 ⋯ v k ) T = v \frac{d\left( u\cdot v \right)}{du}=\frac{d\left( {{v}^{T}}u \right)}{du}=\frac{d\sum{{{u}_{i}}{{v}_{i}}}}{du}={{\left( \begin{matrix} \frac{d\sum{{{u}_{i}}{{v}_{i}}}}{d{{u}_{1}}} & \frac{d\sum{{{u}_{i}}{{v}_{i}}}}{d{{u}_{2}}} & \cdots & \frac{d\sum{{{u}_{i}}{{v}_{i}}}}{d{{u}_{m}}} \\ \end{matrix} \right)}^{T}}={{\left( \begin{matrix} {{v}_{1}} & {{v}_{2}} & \cdots & {{v}_{k}} \\ \end{matrix} \right)}^{T}}=v dud(uv)=dud(vTu)=duduivi=(du1duividu2duividumduivi)T=(v1v2vk)T=v
例2: w = v w=v w=v
d ( u ⋅ v ) d v = d ( v T u ) d v = d ∑ u i v i d v = ( d ∑ u i v i d v 1 d ∑ u i v i d v 2 ⋯ d ∑ u i v i d v m ) T = ( u 1 u 2 ⋯ u k ) T = u \frac{d\left( u\cdot v \right)}{dv}=\frac{d\left( {{v}^{T}}u \right)}{dv}=\frac{d\sum{{{u}_{i}}{{v}_{i}}}}{dv}={{\left( \begin{matrix} \frac{d\sum{{{u}_{i}}{{v}_{i}}}}{d{{v}_{1}}} & \frac{d\sum{{{u}_{i}}{{v}_{i}}}}{d{{v}_{2}}} & \cdots & \frac{d\sum{{{u}_{i}}{{v}_{i}}}}{d{{v}_{m}}} \\ \end{matrix} \right)}^{T}}={{\left( \begin{matrix} {{u}_{1}} & {{u}_{2}} & \cdots & {{u}_{k}} \\ \end{matrix} \right)}^{T}}=u dvd(uv)=dvd(vTu)=dvduivi=(dv1duividv2duividvmduivi)T=(u1u2uk)T=u
例3: u = v = x , w = y u=v=x,w=y u=v=x,w=y
d ( x T x ) d y = 2 d ( x T ) d y x \frac{d\left( {{x}^{T}}x \right)}{dy}=2\frac{d\left( {{x}^{T}} \right)}{dy}x dyd(xTx)=2dyd(xT)x
例4: u = v = w = x u=v=w=x u=v=w=x
d ( x T ⋅ x ) d x = 2 x \frac{d\left( {{x}^{T}}\cdot x \right)}{dx}=2x dxd(xTx)=2x
叉乘对列向量求导:(以3×1的列向量为例,即m=n=3)
d ( u × v ) T d w = d ( u 2 v 3 − u 3 v 2 u 3 v 1 − u 1 v 3 u 1 v 2 − u 2 v 1 ) d w \frac{d{{\left( u\times v \right)}^{T}}}{dw}=\frac{d\left( \begin{matrix} {{u}_{2}}{{v}_{3}}-{{u}_{3}}{{v}_{2}} & {{u}_{3}}{{v}_{1}}-{{u}_{1}}{{v}_{3}} & {{u}_{1}}{{v}_{2}}-{{u}_{2}}{{v}_{1}} \\ \end{matrix} \right)}{dw} dwd(u×v)T=dwd(u2v3u3v2u3v1u1v3u1v2u2v1)
例1:
d ( u × v ) T d u = ( 0 − v 3 v 2 v 3 0 − v 1 − v 2 v 1 0 ) \frac{d{{\left( u\times v \right)}^{T}}}{du}=\left( \begin{matrix} 0 & -{{v}_{3}} & {{v}_{2}} \\ {{v}_{3}} & 0 & -{{v}_{1}} \\ -{{v}_{2}} & {{v}_{1}} & 0 \\ \end{matrix} \right) dud(u×v)T=0v3v2v30v1v2v10
d ( u × v ) T d u w = ( 0 − v 3 v 2 v 3 0 − v 1 − v 2 v 1 0 ) ( w 1 w 2 w 3 ) = ( − v 3 w 2 + v 2 w 3 v 3 w 1 − v 1 w 3 − v 2 w 1 + v 1 w 2 ) = v × w \frac{d{{\left( u\times v \right)}^{T}}}{du}w=\left( \begin{matrix} 0 & -{{v}_{3}} & {{v}_{2}} \\ {{v}_{3}} & 0 & -{{v}_{1}} \\ -{{v}_{2}} & {{v}_{1}} & 0 \\ \end{matrix} \right)\left( \begin{matrix} {{w}_{1}} \\ {{w}_{2}} \\ {{w}_{3}} \\ \end{matrix} \right)=\left( \begin{matrix} -{{v}_{3}}{{w}_{2}}+{{v}_{2}}{{w}_{3}} \\ {{v}_{3}}{{w}_{1}}-{{v}_{1}}{{w}_{3}} \\ -{{v}_{2}}{{w}_{1}}+{{v}_{1}}{{w}_{2}} \\ \end{matrix} \right)=v\times w dud(u×v)Tw=0v3v2v30v1v2v10w1w2w3=v3w2+v2w3v3w1v1w3v2w1+v1w2=v×w
例2:
d ( u × v ) T d v = ( 0 u 3 − u 2 − u 3 0 u 1 u 2 − u 1 0 ) \frac{d{{\left( u\times v \right)}^{T}}}{dv}=\left( \begin{matrix} 0 & {{u}_{3}} & -{{u}_{2}} \\ -{{u}_{3}} & 0 & {{u}_{1}} \\ {{u}_{2}} & -{{u}_{1}} & 0 \\ \end{matrix} \right) dvd(u×v)T=0u3u2u30u1u2u10
d ( u × v ) T d v w = ( 0 u 3 − u 2 − u 3 0 u 1 u 2 − u 1 0 ) ( w 1 w 2 w 3 ) = ( u 3 w 2 − u 2 w 3 − u 3 w 1 + u 1 w 3 u 2 w 1 − u 1 w 2 ) = w × u \frac{d{{\left( u\times v \right)}^{T}}}{dv}w=\left( \begin{matrix} 0 & {{u}_{3}} & -{{u}_{2}} \\ -{{u}_{3}} & 0 & {{u}_{1}} \\ {{u}_{2}} & -{{u}_{1}} & 0 \\ \end{matrix} \right)\left( \begin{matrix} {{w}_{1}} \\ {{w}_{2}} \\ {{w}_{3}} \\ \end{matrix} \right)=\left( \begin{matrix} {{u}_{3}}{{w}_{2}}-{{u}_{2}}{{w}_{3}} \\ -{{u}_{3}}{{w}_{1}}+{{u}_{1}}{{w}_{3}} \\ {{u}_{2}}{{w}_{1}}-{{u}_{1}}{{w}_{2}} \\ \end{matrix} \right)=w\times u dvd(u×v)Tw=0u3u2u30u1u2u10w1w2w3=u3w2u2w3u3w1+u1w3u2w1u1w2=w×u
例3:向量的叉乘对向量求导,即雅可比矩阵
J = ∂ ( u × v ) ∂ u = ∂ ∂ u [ − u 3 v 2 + u 2 v 3 u 3 v 1 − u 1 v 3 − u 2 v 1 + u 1 v 2 ] = [ 0 v 3 − v 2 − v 3 0 v 1 v 2 − v 1 0 ] = − v × \boldsymbol{J}=\frac{\partial(\boldsymbol{u} \times \boldsymbol{v})}{\partial \boldsymbol{u}}=\frac{\partial}{\partial \boldsymbol{u}}\left[\begin{array}{c}-u_{3} v_{2}+u_{2} v_{3} \\ u_{3} v_{1}-u_{1} v_{3} \\ -u_{2} v_{1}+u_{1} v_{2}\end{array}\right]=\left[\begin{array}{ccc}0 & v_{3} & -v_{2} \\ -v_{3} & 0 & v_{1} \\ v_{2} & -v_{1} & 0\end{array}\right]=-\boldsymbol{v}^{\times} J=u(u×v)=uu3v2+u2v3u3v1u1v3u2v1+u1v2=0v3v2v30v1v2v10=v×
例4:向量的叉乘对向量求导,即雅可比矩阵
J = ∂ ( u × v ) ∂ v = ∂ ∂ v [ − u 3 v 2 + u 2 v 3 u 3 v 1 − u 1 v 3 − u 2 v 1 + u 1 v 2 ] = [ 0 − u 3 u 2 u 3 0 − u 1 − u 2 u 1 0 ] = u × \boldsymbol{J}=\frac{\partial(\boldsymbol{u} \times \boldsymbol{v})}{\partial \boldsymbol{v}}=\frac{\partial}{\partial \boldsymbol{v}}\left[\begin{array}{c}-u_{3} v_{2}+u_{2} v_{3} \\ u_{3} v_{1}-u_{1} v_{3} \\ -u_{2} v_{1}+u_{1} v_{2}\end{array}\right]=\left[\begin{array}{ccc}0 & -u_{3} & u_{2} \\ u_{3} & 0 & -u_{1} \\ -u_{2} & u_{1} & 0\end{array}\right]=\boldsymbol{u}^{\times} J=v(u×v)=vu3v2+u2v3u3v1u1v3u2v1+u1v2=0u3u2u30u1u2u10=u×
例5:
d ( u / ∥ u ∥ n    ) T d u = ( d ( u 1 u 1 2 + u 2 2 + u 3 2 n ) d u 1 d ( u 2 u 1 2 + u 2 2 + u 3 2 n ) d u 1 d ( u 3 u 1 2 + u 2 2 + u 3 2 n ) d u 1 d ( u 1 u 1 2 + u 2 2 + u 3 2 n ) d u 2 d ( u 2 u 1 2 + u 2 2 + u 3 2 n ) d u 2 d ( u 3 u 1 2 + u 2 2 + u 3 2 n ) d u 2 d ( u 1 u 1 2 + u 2 2 + u 3 2 n ) d u 3 d ( u 2 u 1 2 + u 2 2 + u 3 2 n ) d u 3 d ( u 3 u 1 2 + u 2 2 + u 3 2 n ) d u 3 ) = ( 1 ∥ u ∥ n − u 1 2 ∥ u ∥ n + 2 − u 2 u 1 ∥ u ∥ n + 2 − u 3 u 1 ∥ u ∥ n + 2 − u 1 u 2 ∥ u ∥ n + 2 1 ∥ u ∥ n − u 2 2 ∥ u ∥ 3 − u 3 u 2 ∥ u ∥ n + 2 − u 1 u 3 ∥ u ∥ n + 2 − u 2 u 3 ∥ u ∥ n + 2 1 ∥ u ∥ n − u 3 2 ∥ u ∥ n + 2 ) = I 3 ∥ u ∥ n − u ⋅ u T ∥ u ∥ n + 2 \frac{d{{\left( {u}/{\left\| u \right\|}^n\; \right)}^{T}}}{du}=\left( \begin{matrix} \frac{d\left( \frac{{{u}_{1}}}{\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}^n} \right)}{d{{u}_{1}}} & \frac{d\left( \frac{{{u}_{2}}}{\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}^n} \right)}{d{{u}_{1}}} & \frac{d\left( \frac{{{u}_{3}}}{\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}^n} \right)}{d{{u}_{1}}} \\ \frac{d\left( \frac{{{u}_{1}}}{\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}^n} \right)}{d{{u}_{2}}} & \frac{d\left( \frac{{{u}_{2}}}{\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}^n} \right)}{d{{u}_{2}}} & \frac{d\left( \frac{{{u}_{3}}}{\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}^n} \right)}{d{{u}_{2}}} \\ \frac{d\left( \frac{{{u}_{1}}}{\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}^n} \right)}{d{{u}_{3}}} & \frac{d\left( \frac{{{u}_{2}}}{\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}^n} \right)}{d{{u}_{3}}} & \frac{d\left( \frac{{{u}_{3}}}{\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}^n} \right)}{d{{u}_{3}}} \\ \end{matrix} \right)=\left( \begin{matrix} \frac{1}{{\left\| u \right\|}^n}-\frac{u_{1}^{2}}{{{\left\| u \right\|}^{n+2}}} & -\frac{{{u}_{2}}{{u}_{1}}}{{{\left\| u \right\|}^{n+2}}} & -\frac{{{u}_{3}}{{u}_{1}}}{{{\left\| u \right\|}^{n+2}}} \\ -\frac{{{u}_{1}}{{u}_{2}}}{{{\left\| u \right\|}^{n+2}}} & \frac{1}{{\left\| u \right\|}^n}-\frac{u_{2}^{2}}{{{\left\| u \right\|}^{3}}} & -\frac{{{u}_{3}}{{u}_{2}}}{{{\left\| u \right\|}^{n+2}}} \\ -\frac{{{u}_{1}}{{u}_{3}}}{{{\left\| u \right\|}^{n+2}}} & -\frac{{{u}_{2}}{{u}_{3}}}{{{\left\| u \right\|}^{n+2}}} & \frac{1}{{\left\| u \right\|}^n}-\frac{u_{3}^{2}}{{{\left\| u \right\|}^{n+2}}} \\ \end{matrix} \right)=\frac{{{I}_{3}}}{{\left\| u \right\|}^n}-\frac{u\cdot {{u}^{T}}}{{{\left\| u \right\|}^{n+2}}} dud(u/un)T=du1d(u12+u22+u32 nu1)du2d(u12+u22+u32 nu1)du3d(u12+u22+u32 nu1)du1d(u12+u22+u32 nu2)du2d(u12+u22+u32 nu2)du3d(u12+u22+u32 nu2)du1d(u12+u22+u32 nu3)du2d(u12+u22+u32 nu3)du3d(u12+u22+u32 nu3)=un1un+2u12un+2u1u2un+2u1u3un+2u2u1un1u3u22un+2u2u3un+2u3u1un+2u3u2un1un+2u32=unI3un+2uuT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值