torch.nn.Linear()和torch.nn.functional.linear()使用的简单示例

参考链接: torch.nn.functional.linear(input, weight, bias=None)
参考链接: class torch.nn.Linear(in_features, out_features, bias=True)

在这里插入图片描述

在这里插入图片描述

代码实验展示:

Microsoft Windows [版本 10.0.18363.1316]
(c) 2019 Microsoft Corporation。保留所有权利。

C:\Users\chenxuqi>conda activate ssd4pytorch1_2_0

(ssd4pytorch1_2_0) C:\Users\chenxuqi>python
Python 3.7.7 (default, May  6 2020, 11:45:54) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> import torch.nn as nn
>>> import torch.nn.functional as F
>>> torch.manual_seed(seed=20200910)
<torch._C.Generator object at 0x000002470C22D330>
>>>
>>> data_in = torch.randn(3,4,5,6,7)
>>> data_in.shape
torch.Size([3, 4, 5, 6, 7])
>>> linear4cxq = nn.Linear(7, 30)
>>>
>>> linear4cxq
Linear(in_features=7, out_features=30, bias=True)
>>>
>>> data_out = linear4cxq(data_in)
>>> data_out.shape
torch.Size([3, 4, 5, 6, 30])
>>>
>>> data_in.shape
torch.Size([3, 4, 5, 6, 7])
>>>
>>>
>>>
torch.nn.Linear是PyTorch中的一个模块,用于定义一个线性层。它接受两个参数,即输入输出的维度。通过调用torch.nn.Linear(input_dim, output_dim),可以创建一个线性层,其中input_dim是输入的维度,output_dim是输出的维度。Linear模块的主要功能是执行线性变换,将输入数据乘以权重矩阵,并加上偏置向量。这个函数的具体实现可以参考PyTorch官方文档中的链接。 在引用中的示例中,linear1是一个Linear模块的实例。可以通过print(linear1.weight.data)来查看linear1的权重。示例中给出了权重的具体数值。 在引用中的示例中,x是一个Linear模块的实例,输入维度为5,输出维度为2。通过调用x(data)来计算线性变换的结果。在这个示例中,输入data的维度是(5,5),输出的维度是(5,2)。可以使用torch.nn.functional.linear函数来实现与torch.nn.Linear相同的功能,其中weightbias分别表示权重矩阵偏置向量。 以上是关于torch.nn.Linear的一些介绍示例。如果需要更详细的信息,可以参考PyTorch官方文档中关于torch.nn.Linear的说明。 https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [torch.nn.Linear详解](https://blog.csdn.net/sazass/article/details/123568203)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [torch.nn.Linear](https://blog.csdn.net/weixin_41620490/article/details/127833324)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [pytorch 笔记:torch.nn.Linear() VS torch.nn.function.linear()](https://blog.csdn.net/qq_40206371/article/details/124473437)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值