永磁同步电机高性能控制算法(13)—— 基于高阶扩张状态观测器(ESO)的无模型预测控制(MFPC

1.前言

这几年无模型预测控制比较火,特别是基于扩张状态观测器(Extended State Observer/ESO)的无模型预测控制(Model-Free Predictive Control/MFPC)。

https://zhuanlan.zhihu.com/p/660705382icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/660705382

在上学期做电机控制课程汇报的时候,我把几种控制策略都交上去作为了一个汇报。

https://zhuanlan.zhihu.com/p/680117350icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/680117350

在这里面,基于ESO的无差拍预测控制和基于ESO的无模型预测控制都用到了ESO。当时这个ESO是最传统的二阶线性ESO,其表达式如下:

当时的任课老师提出了一个建议,让我回去用高阶的ESO看看效果对比

所以今天想来用高阶ESO来替代基于传统二阶ESO的无模型预测电流控制。

2.高阶扩张状态观测器的优势与不足

这篇文章先说了高阶ESO的优势和不足。根据文中给的这张bode图可以知道:当阶数增加时,观测值对测量噪声更敏感,但抗干扰能力更强上级。此外,HESO的抗干扰能力随着带宽的增加而增强,但对噪声更加敏感。因此,随着阶数和带宽的增加,HESO的抗干扰能力增强,但对噪声的鲁棒性减弱

解释:

(1)这里说的抗干扰能力,也就是动态响应速度;抗干扰能力越强,动态响应速度越快。

(2)这里说的噪声干扰,可以等效为纹波。因为我要用高阶ESO替代无模型预测电流控制中的ESO,所以我的HESO就是用在电流环。那么我对噪声的鲁棒性越弱的话,电流的THD就会越大。

3.传统高阶扩张状态观测器的参数设计

我仿真用的是四阶ESO(三阶系统)。这篇文章中直接给了传统的四阶ESO的增益表达式。

具体这个四阶ESO的四个参数为什么是这样设置的,其实这个在知乎上已经有大佬发过了。

https://zhuanlan.zhihu.com/p/671468538icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/671468538

感兴趣的可以看一看。

正如前文所说,高阶ESO的动态响应虽然快,但是抗噪声的能力不强。所以这篇英文论文还重新整定了一下高阶ESO的参数。

 4.改进高阶扩张状态观测器的参数设计

 

 

 

具体的推导和分析过程我就不展示了。

下图的HESO1就是改进的改进高阶扩张状态观测器;HESO2就是传统的改进高阶扩张状态观测器。从图(a)可以看的,改进HESO1在高频段的增益明显更小,受到噪声的影响就越小。

 

5.仿真对比

仿真采用的模型是:基于扩张状态观测器(ESO)的无模型预测电流控制(MFPCC)。

对比的三个模型:

1)基于传统二阶ESO的无模型预测电流控制

2)基于传统四阶ESO的无模型预测电流控制

3)基于改进四阶ESO的无模型预测电流控制

仿真参数:

Ts = 5e-7;%仿真步长

Tpwm = 1e-4;%开关周期

Tsample = Tpwm/1;%采样周期/控制周期

Tspeed = Tsample;%转速采样周期

Pn = 4;%电机极对数

Ld = 8.5e-3;%d轴电感

Lq = 8.5e-3;%q轴电感

Rs = 1;%定子电阻

flux = 0.1688;%永磁体磁链

Vdc = 400;%直流母线电压

iqmax = 20;%额定电流

J = 4e-3;%转动惯量

B = 2e-3;%阻尼系数

n_init = 1000;%初始转速

fc_lpf = 200;%转速计算的低通滤波器截止频率

%转速环PI参数

Kpw = 0.25;

Kiw = 50;

整个仿真过程中设置如下:

初始转速1000RPM,给定转速2000RPM,空载启动;0.2s突加10Nm负载;0.35s减速至1000RPM。

 

三相电流、转矩、转速波形

5.1动态过程中的d电流波形对比(动态性能对比)

三个ESO的带宽wc都设置为500*2*pi。因为q轴电流变化范围太大了,不好观察,我这里用d轴电流波动来对比(红色为实际d轴电流,蓝色为ESO预测的d轴电流)。

基于传统二阶ESO的无模型预测电流控制的d轴电流波形
基于传统四阶ESO的无模型预测电流控制的d轴电流波形
基于改进四阶ESO的无模型预测电流控制的d轴电流波形

这里可以看的,在整个动态过程中,传统四阶ESO的d轴电流波动最小,改进四阶ESO的d轴电流波动次之,传统二阶ESO的d轴电流波动最大。

5.2电感失配下的d电流波形以及相电流FFT分析对比(稳态性能对比)

我之前的知乎也说过了,传统的ESO的无模型预测电流控制也是需要电感参数的。

https://zhuanlan.zhihu.com/p/696436558icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/696436558

电感失配就会出现很大的电流脉动,这时候差不多就相当于引入了高频噪声。因此我们可以通过电感失配来看看各种观测器对高频噪声的敏感程度。

我这里设置控制器中的电感参数为实际电机电感的1.5倍。

 

基于传统二阶ESO的无模型预测电流控制的d轴电流波形
基于传统四阶ESO的无模型预测电流控制的d轴电流波形
基于改进四阶ESO的无模型预测电流控制的d轴电流波形
基于传统二阶ESO的无模型预测电流控制的相电流FFT分析
基于传统四阶ESO的无模型预测电流控制的相电流FFT分析
基于改进四阶ESO的无模型预测电流控制的相电流FFT分析

从相电流THD来看,传统四阶ESO的电流THD最大最大!改进四阶ESO的电流THD较小,传统二阶ESO的电流THD最小。

但是如果从动态性能来看的话改进四阶ESO的动态性能明显更好与传统二阶ESO。

5.3讨论

从伯德图来看,高阶ESO无非就是扩大的传统ESO的带宽。那么,是否可以通过扩大传统ESO的带宽来达到与高阶ESO完全一致的效果呢?

那我尝试了一下,把传统二阶ESO 扩大到原来的2.5倍左右时,传统二阶ESO的动态性能能够达到与传统四阶ESO基本完全相同的效果。

传统二阶ESO的d-q电流波形(带宽为2.5*500*2*pi)
传统四阶ESO的d-q电流波形(带宽为500*2*pi)

在上述动态性能基本一致的情况下,我们来对比一下二者的抗噪声性能。(把控制器电感设置为实际电感的1.3倍)

电感失配1.3倍情况下,传统二阶ESO的d-q电流波形(带宽为2.5*500*2*pi)
电感失配1.3倍情况下,传统四阶ESO的d-q电流波形(带宽为500*2*pi)
电感失配1.3倍情况下,传统二阶ESO的相电流FFT分析(带宽为2.5*500*2*pi)
电感失配1.3倍情况下,传统四阶ESO的相电流FFT分析(带宽为500*2*pi)

从这里的d-q电流波形来看的话,在相同动态性能的情况下,如果面对电感失配,传统四阶ESO反而具有比传统二阶ESO更好的抗噪声性能。(因为传统四阶ESO的d-q电流脉动比较小,而且相电流THD明显小于传统二阶ESO的THD)

从这里看来,感觉高阶ESO更有优势。

6.结语

1)如果从动态性能和稳态性能综合来考虑,改进四阶ESO是这三种ESO中最好的选择。

2)可以通过提高传统二阶ESO的带宽来达到传统四阶ESO一致的动态性能。但是在两者动态性能的一致的前提下,传统四阶ESO具有更好的抗噪声性能。

(这一点只是从我上面这个仿真中看出来的,如果要理论分析的话,我觉得应该还是要从离散域/z频域的分析入手。已经有几篇论文通过离散域/z频域分析了传统ESO的无模型预测电流控制,但是还没有看到有人分析高阶ESO的无模型预测电流控制)

实际上也可以像参考文献一样,做个ESO的切换。

在动态过程中用动态性能好的ESO,在稳态时用抗扰性能好的ESO。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

烦恼归林

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值