Anything LLM + Ollama / LM Studio实现大模型本地部署

一、本地大语言模型软件

1. Ollama

Ollama1是一个用于本地部署大语言模型的开源工具,其部署主要采用命令行的方式,通过文末的官网链接下载对应的Ollama工具,下载完成后会自动打开命令行,只需输入你想要运行的模型,便可以自动从Docker拉取,并运行模型,例如ollama run deepseek-r1:8b
在这里插入图片描述
但是由于命令行界面看着没那么舒服,可以结合Anything LLM使用

2. LM Studio

LM Studio2是一款桌面应用程序,用于在计算机上本地开发和试验大语言模型(LLMs),可以直接从文末的官方链接中下载LM Studio。与Ollma相比,其最大的特点便是已经拥有较好的可视化界面,不必再通过Anything LLM来连接。主要功能包括:

  • 一款用于运行本地大语言模型的桌面应用程序
  • 一个熟悉的聊天界面 搜索与下载功能(通过 Hugging Face 🤗)
  • 一个可以监听类似 OpenAI 端点的本地服务器
  • 一个管理和配置本地模型的系统
    LM Studio的使用界面如下:
    在这里插入图片描述

图中的演示模型采用的DeepSeek-R1-Distill-Llama-8B-GGUF,在使用过程中,可以通过左侧工具栏的搜索🔍图标来查找并下载你感兴趣的模型,在下载过程中会遇到链接打不开或者下载慢的问题,有博主提供了一些解决办法:

具体解决办法参考博客LM-Studio无法搜索以及下载失败的问题对策,

由于更改之后下载速度还是很慢,我选择的方法是通过梯子直接到hugging face下载对应的GGUF文件,例如,下载guangy10/Llama-3.2-1B-Q4_K_M-GGUF,一定要下载.gguf结尾的文件
在这里插入图片描述
下载好之后,从lm studio左侧的工具栏可以打开lm studio的模型文件夹
在这里插入图片描述
最后,将模型文件放到该文件夹下面,便可以加载该模型了。注意文件路径还需要设置新的文件夹名字——lmstudio-community/DeepSeek-R1-Distill-Llama-8B-GGUF
C:\Users\xxxx\.lmstudio\models\lmstudio-community\DeepSeek-R1-Distill-Llama-8B-GGUF
在这里插入图片描述

二、本地大模型部署平台——Anything LLM

Anything LLM不仅可以调用本地的模型,还可以通过API接口调用网页模型,具体操作可以参考博客AnythingLLM:基于RAG方案构专属私有知识库(开源|高效|可定制), 本文主要介绍的是Anything LLM与Ollama和LM Studio的结合,以及我在该过程中遇到的一些问题
在这里插入图片描述

1. 聊天功能

(1)Ollama

首先打开Ollama服务,确保其在运行;随后,通过设置,直接选择Ollama,找到已下载的模型,设置好后可以直接使用
在这里插入图片描述
结合Ollama聊天功能可以正常使用:
在这里插入图片描述

(2)LM Studio

在配置LM Studio的服务时,首先应打开LM Studio,确保其在运行,然后应在左侧点击像命令行一样的标识,打开服务。。
随后,在Anything LLM的设置中,输入端口网址,并加上/v1,如我的是http://127.0.0.1:1234/v1
在这里插入图片描述
再次和在聊天框中和模型聊天,发现模型变成了LM Studio中的Deepseek模型,多了思考的流程在这里插入图片描述

2. 本地知识嵌入

先准备一个文档,我让其他语言模型生成了一个关于张三的自我介绍
在这里插入图片描述
进行知识嵌入时,可以提前设置大模型的温度,设置的越低,回答越靠谱
在这里插入图片描述

(1)Ollama

在设置中Embedder首选项一栏选择Ollama作为嵌入引擎
在这里插入图片描述
在没有嵌入本地知识之间,让大模型介绍一下张三:
在这里插入图片描述

通过上传按钮,为大模型嵌入刚才设置的demo:在这里插入图片描述
可以看到,在test3的工作空间中,已经嵌入了demo.txt文件,然后再让大模型介绍一下张三,可以看到大模型引用了我们的demo文件:
在这里插入图片描述

(2)LM Studio

在设置中将模型改为LM Studio,为了保持对比一直,选用的模型是meta-llama-3.1-8b-instruct,我之前试过了deepseek-r1-distill-llama-8b在anything llm 里面嵌入本地知识会显示模型加载失败,因此,在这里我先展示llama感兴趣的朋友可以去实验一下deepseek-r1。果然又报错了:
在这里插入图片描述
该问题暂时没有找到解决办法,我的解决办法是用Ollama+anything llm组合,但是LM Studio软件本身就可以传入文件,只不过不像anything llm一样可以持久保存本地知识(打开新的对话,依旧能为我介绍张三是谁)
在这里插入图片描述


  1. Ollama官网链接: https://ollama.com/ ↩︎

  2. LM Studio官网链接: https://lmstudio.ai/ ↩︎

### LM Studio with AnythingLLM 使用指南 #### 安装与环境准备 为了在LM Studio中使用AnythingLLM,需先安装必要的依赖和工具。对于Mac用户而言,在macOS上可以通过MLX框架来简化这一流程[^1]。确保已安装最新版本的Python以及pip包管理器。 ```bash brew install python ``` 接着安装所需的Python库: ```bash pip install mlx anythingllm ``` #### 下载预训练模型 从官方渠道获取AnythingLLM桌面版应用,并将其放置于指定目录下以便后续加载[^4]。此步骤至关重要,因为这决定了能够访问哪些特定类型的大型语言模型(LLMs)。 #### 启动LM Studio并集成AnythingLLM 一旦完成了上述准备工作,则可以在终端命令行界面启动LM Studio服务端程序: ```bash lmstudio start ``` 随后按照提示输入路径指向之前下载好的AnythingLLM文件夹位置。此时应该能看到一系列可用选项供自定义调整,例如最大token数量(Max Tokens),这对于不同规模的数据集尤为关键。 #### 参数优化建议 针对具体应用场景下的性能表现考虑,合理设定超参数如`max_tokens=8192`对于某些特殊架构(像llama3:8b-instruct-q8_0)来说可能是必需的操作之一。这些设置直接影响到最终输出的质量及效率,因此值得花时间去探索最适合当前项目的配置方案。 #### 实际操作案例分享 假设现在要基于已有数据微调一个新的对话机器人模型,那么整个工作流可能如下所示:首先准备好标注过的语料;其次利用MLX提供的API接口上传至云端存储空间;最后借助LM Studio图形化界面对话框完成剩余环节——选择基础模型、导入外部资源链接、执行训练任务直至评估效果为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会编程的加缪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值