【考研数学】证明推导:设A,B分别为m,n阶正定矩阵,则分块矩阵C=[A,O,O,B]是正定矩阵

这篇博客讨论了如何利用正定矩阵的性质证明分块矩阵的正定性,作者引用了一篇由赵晨霞等人发表的论文,提出了一种更简洁的高阶对称矩阵正定性判别方法。文章适合对线性代数和矩阵理论感兴趣的读者,特别是关注矩阵正定性的学习者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题来源:汤家凤1800二次型第8题
在这里插入图片描述
答案:
在这里插入图片描述

这里利用了结论:如果:设 A, B分别为 m, n阶正定矩阵, 则分块矩阵 C = ( A O O B ) C=\begin{pmatrix} A&O\\ O&B\\ \end{pmatrix} C=(AOOB)
是正定矩阵。

这个我最初是用特征值理解,后来感觉不太清晰,所以使用了定义证明了一下,如下图:
请添加图片描述
我参考了由赵晨辖等人发布的一篇论文,该篇文章作者给出了判断高阶对称矩阵是不是正定矩阵的更简洁的方法。
在这里插入图片描述
在这里插入图片描述
有兴趣可以看下这篇文章

  • 参考论文
    [1]赵晨霞, 崔玉环, 陈伟丽. 一类分块矩阵的正定性判别方法[J]. 数学学习与研究, 2010(5):1.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值