基于MFCC对GTZAN音乐流派分类

本文介绍了使用MFCC对GTZAN音乐流派分类的深度学习项目,通过PyTorch实现。首先,解释了数据集的特点,包括10种音乐类型的30秒音频文件。接着,详细阐述了MFCC的概念及其在音频特征提取中的作用。随后,描述了训练集的制作和卷积网络的定义。最后,分享了模型训练及结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

大家好,我是阿光。

本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。

正在更新中~ ✨

🚨 我的项目环境:

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版本:1.8.1

💥 项目专栏:【PyTorch深度学习项目实战100例】


一、基于MFCC对GTZAN音乐流派分类

本本我们将开发一个深度学习项目,从音频文件中自动分类不同的音乐类型。我们将利用这些音频文件的频率和时域的低层次特征对它们进行分类。

对于这个项目,我们需要一个数据集的音频轨道具有相似的大小和相似的频率范围。GTZAN类型分类数据集是音乐类型分类项目最推荐的数据集。

### GTZAN 数据集简介 GTZAN数据集是一个广泛应用于音乐流派分类研究的经典数据集,包含了10个不同类型的音乐流派,每个类别中有100首30秒的音频片段[^1]。 ### 音乐流派分类的方法 #### 特征提取 为了有效地进行音乐流派分类,特征的选择至关重要。常用的特征之一是Mel频率倒谱系数(MFCC),这是一种能够捕捉音频信号频域特性的有效工具。通过对音频文件计算MFCC,可以得到一系列反映音色特点的时间序列数值[^2]。 ```python import librosa y, sr = librosa.load('audio_file.wav') mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13) print(mfccs.shape) # 输出形状 (n_mfcc, timesteps) ``` 除了MFCC外,还可以考虑其他声学特性如零交叉率、能量熵等来增强模型的表现力。 #### 数据预处理 考虑到卷积神经网络(CNN)擅长处理二维输入的特点,在实际应用中会将音频转化为梅尔光谱图的形式供后续训练使用。这样做的好处是可以让机器学习算法更好地理解声音模式并提高识别精度。 ```python import matplotlib.pyplot as plt mel_spectrogram = librosa.feature.melspectrogram(y=y, sr=sr) plt.figure(figsize=(10, 4)) librosa.display.specshow(librosa.power_to_db(mel_spectrogram, ref=np.max), y_axis='mel', fmax=8000, x_axis='time') plt.colorbar(format='%+2.0f dB') plt.title('Mel spectrogram') plt.tight_layout() ``` #### 构建分类器 构建一个简单的CNN架构来进行多类别的预测任务: ```python from tensorflow.keras import layers, models model = models.Sequential([ layers.Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(height, width, channels)), layers.MaxPooling2D(pool_size=(2, 2)), layers.Flatten(), layers.Dense(num_classes, activation='softmax')]) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) ``` ### 应用场景 利用上述技术框架开发的应用程序可以在多个领域发挥作用,比如在线音乐平台可以根据用户的收听习惯自动推荐相似风格的新曲目;智能音箱设备则能依据环境噪音水平调整播放列表中的歌曲类型以优化用户体验等等[^3]。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值