文章目录
摘要
在前面的文章中,我们尝试用DCNv3替换YoloV8中的结构,实现了分数的上涨。在这篇文章中,我们尝试用DCNv1与DCNv2.比一比哪个才是最优秀的小黑子。

DCNv1和DCNv2(可变形卷积)
论文链接:
- DCN v1论文https://arxiv.org/pdf/1703.06211.pdf
- DCN v2论文https://arxiv.org/pdf/1811.1116
背景
在计算机视觉领域,同一物体在不同场景,角度中未知的几何变换是检测/识别的一大挑战,通常来说我们有两种做法:
(1)通过充足的数据增强,扩充足够多的样本去增强模型适应尺度变换的能力。
(2)设置一些针对几何变换不变的特征或者算法,比如SIFT和sliding windows。
两种方法都有缺陷,第一种方法因为样本的局限性显然模型的泛化能力比较低,无法泛化到一般场景中,第二种方法则因为手工设计的不变特征和算法对于过于复杂的变换是很难的而无法设计。所以作者提出了Deformable Conv(可变形卷积)。
可变形卷积
可变形卷积顾名思义就是卷积的位置是可
本文探讨了在YOLOV8中应用DCNv1和DCNv2以提高模型性能,分析了两者背景及原理,并通过实验比较了两种方法的效果。虽然结果显示地图得分提升,但DCN的计算复杂度高,消耗显存,可能导致训练速度慢。
订阅专栏 解锁全文
4384

被折叠的 条评论
为什么被折叠?



