YOLOv8-AM:具有注意力机制的小儿腕部骨折检测YOLOv8

本文提出了YOLOv8-AM,一个结合注意力机制的骨折检测模型,专门针对小儿腕部骨折。通过在YOLOv8架构中集成卷积块注意力模块(CBAM)、高效通道注意力(ECA)、Shuffle Attention (SA) 和全局注意力机制(GAM),模型在GRAZPEDWRI-DX数据集上的平均精度均值(mAP 50)从63.6%提高到了65.8%,实现SOTA性能。实验结果显示,ResCBAM的性能优于其他注意力模块,而ResGAM则在一定程度上提升了模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

https://arxiv.org/ftp/arxiv/papers/2402/2402.09329.pdf

在日常生活中,手腕创伤甚至骨折的情况经常发生,特别是在儿童中,他们占骨折病例的很大一部分。在进行手术之前,外科医生通常要求患者首先进行X射线成像,并根据放射科医生的分析进行准备。随着神经网络的发展,You Only Look Once(YOLO)系列模型已广泛用于骨折检测的计算机辅助诊断(CAD)中。2023年,Ultralytics推出了YOLO模型的最新版本,该模型已用于检测身体各部位的骨折。注意力机制是提高模型性能的最热门方法之一。这项研究工作提出了YOLOv8-AM,它将注意力机制融入到原始的YOLOv8架构中。具体来说,我们分别采用四个注意力模块,即卷积块注意力模块(CBAM)、全局注意力机制(GAM)、高效通道注意力(ECA)和Shuffle注意力(SA),来设计改进后的模型,并在GRAZPEDWRI-DX数据集上进行训练。实验结果表明,基于ResBlock + CBAM(ResCBAM)的YOLOv8-AM模型的mAP 50从63.6%提高到65.8%,达到了目前最佳性能(SOTA)。相反,融入GAM的YOLOv8-AM模型的m

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值