浅层神经网络,以向量的形式表示神经网络的正向输出,激活函数比较,神经函数的反向传播,权重随机初始化

单个样本的浅层神经网络正向传播矩阵运算过程:

输入层到隐藏层的正向传播计算公式:

从隐藏层到输出层的正向传播计算公式为: 

其中a[1]为: 

将上述表达式转换成正向传播矩阵运算的形式: 

对于m个训练样本,我们也可以使用矩阵相乘的形式:

其中,Z[1]的维度是(4,m),4是隐藏层神经元的个数;A[1]的维度与Z[1]相同;Z[2]和A[2]的维度均为(1,m)。对上面这四个矩阵来说,均可以这样来理解:行表示神经元个数,列表示样本数目m。

浅层神经网络的反向传播的向量表达式:

 

激活函数的使用场景:

如果是分类问题,输出层的激活函数一般会选择sigmoid函数。但是隐藏层的激活函数通常不会选择sigmoid函数,tanh函数的表现会比sigmoid函数好一些。实际应用中,通常会会选择使用ReLU或者Leaky ReLU函数,保证梯度下降速度不会太小。其实,具体选择哪个函数作为激活函数没有一个固定的准确的答案,应该要根据具体实际问题进行验证(validation)。
 

随机初始化:

我们把这种权重W全部初始化为零带来的问题称为symmetry breaking problem。解决方法也很简单,就是将W进行随机初始化(b可初始化为零)。python里可以使用如下语句进行W和b的初始化:

W_1 = np.random.randn((2,2))*0.01
b_1 = np.zero((2,1))
W_2 = np.random.randn((1,2))*0.01
b_2 = 0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我可以帮你解决这个问题。以下是不依赖于`sklearn`库的完整Python代码: ```python import numpy as np import matplotlib.pyplot as plt # 定义sigmoid函数以及其导数 def sigmoid(x): return 1 / (1 + np.exp(-x)) def sigmoid_derivative(x): return x * (1 - x) # 随机生成三类数据,每类20个样本,样本为二维向量 np.random.seed(0) n_samples = 20 X1 = np.random.randn(n_samples, 2) + np.array([0, 0]) X2 = np.random.randn(n_samples, 2) + np.array([2, 2]) X3 = np.random.randn(n_samples, 2) + np.array([-2, 2]) X = np.vstack((X1, X2, X3)) y = np.array([0] * n_samples + [1] * n_samples + [2] * n_samples) # 构建BP神经网络进行分类 n_input = 2 n_hidden = 5 n_output = 3 learning_rate = 0.1 n_iterations = 10000 # 随机初始化权重 W1 = np.random.randn(n_input, n_hidden) W2 = np.random.randn(n_hidden, n_output) # 开始训练 for i in range(n_iterations): # 正向传播 hidden_input = np.dot(X, W1) hidden_output = sigmoid(hidden_input) output_input = np.dot(hidden_output, W2) output_output = sigmoid(output_input) # 反向传播 output_error = y.reshape(-1, 1) - output_output output_delta = output_error * sigmoid_derivative(output_output) hidden_error = np.dot(output_delta, W2.T) hidden_delta = hidden_error * sigmoid_derivative(hidden_output) # 更新权重 W2 += learning_rate * np.dot(hidden_output.T, output_delta) W1 += learning_rate * np.dot(X.T, hidden_delta) # 可视化分类结果 xx, yy = np.meshgrid(np.linspace(-4, 4, 200), np.linspace(-4, 4, 200)) Z = np.zeros((xx.size, 3)) hidden = sigmoid(np.dot(np.c_[xx.ravel(), yy.ravel()], W1)) output = sigmoid(np.dot(hidden, W2)) Z[:, 0] = output[:, 0] Z[:, 1] = output[:, 1] Z[:, 2] = output[:, 2] Z = np.argmax(Z, axis=1) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Accent, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Accent) plt.xlim(-4, 4) plt.ylim(-4, 4) plt.show() ``` 在这个例子中,我们定义了一个名为`sigmoid`的函数,它实现了sigmoid函数(用于激活神经元),并定义了一个名为`sigmoid_derivative`的函数,它计算sigmoid函数的导数(用于反向传播)。 我们随机生成三类数据,每类20个样本,样本为二维向量。然后,我们将它们合并成一个数据集`X`,并为每个样本打上标签`y`。 接下来,我们定义了神经网络的架构。在这个例子中,我们使用一个包含一个隐层的神经网络进行分类,输入层有2个神经元,隐层有5个神经元,输出层有3个神经元(对应三个类别)。我们还定义了学习率、迭代次数等超参数。 接着,我们随机初始化权重,然后开始训练。在每个迭代中,我们执行正向传播,计算损失函数,然后执行反向传播来更新权重。最后,我们使用可视化函数将分类结果可视化。 运行这段代码,你将得到一个可视化的分类结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值