浅层神经网络,以向量的形式表示神经网络的正向输出,激活函数比较,神经函数的反向传播,权重随机初始化

文章详细阐述了单个样本在浅层神经网络中的正向传播矩阵运算过程,包括输入层到隐藏层以及隐藏层到输出层的计算公式,并介绍了矩阵相乘形式的应用。同时,讨论了反向传播的向量表达式以及不同层常用的激活函数选择,如sigmoid、tanh、ReLU和LeakyReLU。此外,文章强调了权重随机初始化的重要性,以避免symmetrybreakingproblem,并给出了Python实现示例。
摘要由CSDN通过智能技术生成

单个样本的浅层神经网络正向传播矩阵运算过程:

输入层到隐藏层的正向传播计算公式:

从隐藏层到输出层的正向传播计算公式为: 

其中a[1]为: 

将上述表达式转换成正向传播矩阵运算的形式: 

对于m个训练样本,我们也可以使用矩阵相乘的形式:

其中,Z[1]的维度是(4,m),4是隐藏层神经元的个数;A[1]的维度与Z[1]相同;Z[2]和A[2]的维度均为(1,m)。对上面这四个矩阵来说,均可以这样来理解:行表示神经元个数,列表示样本数目m。

浅层神经网络的反向传播的向量表达式:

 

激活函数的使用场景:

如果是分类问题,输出层的激活函数一般会选择sigmoid函数。但是隐藏层的激活函数通常不会选择sigmoid函数,tanh函数的表现会比sigmoid函数好一些。实际应用中,通常会会选择使用ReLU或者Leaky ReLU函数,保证梯度下降速度不会太小。其实,具体选择哪个函数作为激活函数没有一个固定的准确的答案,应该要根据具体实际问题进行验证(validation)。
 

随机初始化:

我们把这种权重W全部初始化为零带来的问题称为symmetry breaking problem。解决方法也很简单,就是将W进行随机初始化(b可初始化为零)。python里可以使用如下语句进行W和b的初始化:

W_1 = np.random.randn((2,2))*0.01
b_1 = np.zero((2,1))
W_2 = np.random.randn((1,2))*0.01
b_2 = 0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值