从ChatGPT到DeepSeek R1,一文讲清楚AI、AGI、AIGC与LLM等概念

随着DeepSeek的横空出示,各种AI概念、大模型爆火,这股AI旋风也传递到各行各业。

目前我们在各类文章中,也会看到各种词语,总觉得它们都很相似,被这些词汇搞得头晕。花了点时间,整理下一些常见的概念,希望对大家有帮助。

一、AI、AGI与AIGC:概念与区别

1、人工智能-AI(Artificial Intelligence):人工智能是计算机科学的分支,目标是让机器模拟人类智能,涵盖感知、学习、推理等能力。当前应用包括自动驾驶、智能客服、医疗诊断等。

2、 通用人工智能-AGI(Artificial General Intelligence):AGI是AI的高级形态,追求像人类一样具备跨领域学习、创造和适应能力的“全能智能体”。目前仍处于理论探索阶段,OpenAI的GPT-4o和DeepSeek的R1模型被认为是迈向AGI的重要尝试。

3、AI生成内容-AIGC(Artificial Intelligence Generated Content):通过AI生成文字、图像、音视频等内容。被认为是继专业生产内容(PGC)、用户生产内容(UGC)之后的新型内容创作方式。互联网内容生产方式经历了PGC—UGC—AIGC的过程。例如ChatGPT生成文案、Stable Diffusion创作图像。AIGC被视为内容生产的革命性工具,但依赖特定任务模型,与AGI的通用性有本质区别。

综上所述,AI是一个广泛而深入的概念,涵盖了人工智能的各个方面;AIGC是AI在内容创作领域的一种应用,提高了内容生产的效率和质量;而AGI则是AI发展的一个更高阶段,追求的是全面的认知能力。三者相互联系又相互区别,共同推动着人工智能领域的发展和进步。

提炼一下,相似的两个词汇,AGI和AIGC,关键区别是:

  • 目标:AIGC是工具,AGI是终极目标。

  • 能力:AIGC专注生成,AGI需具备推理与创造。

  • 应用:AIGC已商业化(如广告、影视),AGI尚在实验室。

二、大模型:AI革命的引擎

从上面可以看出,现在被我们广泛谈起的AI,主要是指的AIGC领域。

AIGC涉及到的领域和技术很广泛,其中很重要的一项技术就是NLP( Natural Language Processing自然语言处理),之所以把这3个概念放在一起描述,这两年来,AIGC取得了令人瞩目的增长,有很大因素就在于自然语言处理(NLP),而推动NLP发展到的就是LLM(Large Language Model大型语言模型)。

大模型(LLM)是推动AI发展的核心,基于海量数据与算力训练,代表公司和相关技术包括:

OpenAI的GPT系列

  • ChatGPT:基于GPT-3.5/4,以对话交互引爆AIGC浪潮,支持文案、代码、翻译等任务。
  • GPT-4o:强化逻辑推理能力,被视为迈向AGI的关键一步。

DeepSeek的颠覆性创新

  • V3模型:6710亿参数,采用混合专家网络(MoE)架构,以1/10成本实现GPT-4o性能,支持128k上下文理解。
  • R1模型:纯强化学习训练,数学与代码能力比肩OpenAI o1,API成本仅为后者的1/27。

按照是否带推理能力,又被分为推理大模型和通用大模型:

1、推理大模型与通用大模型的定义与对比

推理大模型

  • 定义:具备逻辑推理、问题解决能力的模型,能够处理复杂任务(如数学证明、代码调试)。

  • 特点:依赖高质量数据与强化学习,成本高但通用性强。

  • 代表:OpenAI的GPT-4o、DeepSeek的R1。

通用大模型

  • 定义:专注于内容生成(如文本、图像、音频),缺乏深度推理能力。

  • 特点:训练成本较低,适合特定任务(如文案生成、图像创作)。

  • 代表:Stable Diffusion、MidJourney。

2、 主流大模型对比:ChatGPT 4o、OpenAI o1与DeepSeek V3、R1

技术亮点:

  • ChatGPT 4o:多模态能力突出,适合复杂任务,但成本高。

  • OpenAI o1:数学与代码能力顶尖,但训练成本极高,商业化受限。

  • DeepSeek V3:低成本高效推理,适合中小企业与开发者。

  • DeepSeek R1:纯强化学习训练,数学与代码能力比肩o1,API成本极低。

三、2025年AI趋势:DeepSeek能否颠覆OpenAI?

1、技术路线之争:

  • OpenAI:聚焦通用性与安全性,依赖人工反馈(RLHF)优化模型行为。

  • DeepSeek:以强化学习为核心,通过规则奖励机制(如数学答案自动验证)降低成本,推动推理能力“涌现”。

2、 商业化落地:

  • OpenAI通过ChatGPT企业版、API订阅盈利,但高成本限制中小开发者。

  • DeepSeek开源模型+低价API(每百万tokens仅1元),吸引开发者生态,加速行业渗透。

3、 多模态与行业应用:

  • OpenAI的Sora:视频生成技术突破,但未完全开源。

  • DeepSeek的Janus-Pro:7B参数实现图文双向生成,开源推动医疗、教育等垂直场景应用。

四、未来展望:AGI离我们还有多远?

1、技术瓶颈:

  • 数据与算力:高质量数据稀缺,训练成本高昂(如GPT-4耗资1亿美元)。

  • 伦理与安全:AGI的自主决策可能引发失控风险,需全球监管协作。

2、 中国力量崛起:

  • DeepSeek、百度、阿里等企业通过开源与技术创新,缩小与OpenAI差距,甚至在推理、数学等领域实现反超。

结语:AI的终极目标是AGI,但当下AIGC与大模型已重塑社会生产力。无论是OpenAI的霸主地位,还是DeepSeek的低成本颠覆,2025年的AI竞赛注定精彩。唯一确定的是:“谁掌握效率与生态,谁将定义未来”。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值