Sam Altman(OpenAI CEO)提出AI的发展通常被划分为五个级别,这些级别基于AI系统的能力、自主性、智能水平以及应用范围进行划分。
L1:聊天机器人(Chatbots)****,主要用于对话和简单的信息交流。
L2:推理者(Reasoners)****,能够进行推理和问题解决,展现出高级推理能力。
L3:智能体(Agents)****,能够完成长期任务,具备更强的自主性和决策能力。
L4:创新者(Innovators)****,具备创新能力,能够像科学家一样发现新的科学信息和技术突破。
L5:完整组织(Organizations)****,能够像公司或组织一样运作,具备全面的决策、规划、执行和协调能力。
一、L1:聊天机器人(Chatbots)
L1级别(聊天机器人)有哪些特点?AI系统能够进行基本的对话和交流,显示出对自然语言的基本理解能力,并能对各种提示和问题作出响应**。**
这一级别的人工智能主要被应用于智能客服、智能助手等场景,提供基础的信息咨询和交互服务。例如,日常生活中的聊天机器人,它们能够解答用户的问题、提供信息,甚至进行简单的互动。
DeepSeek-R1-Distill系列是基于强化学习蒸馏的模型**,具有小参数、高效率的特点,适用于资源受限环境。其能力介于L1(简单对话)至L2(推理者)级别之间,具体取决于参数和应用场景,但仍具备一定推理能力,可视为L2低端或L1至L2过渡阶段。**
二、L2:推理者(Reasoners)
************L2:推理者(Reasoners)有哪些特点?********AI系统能够以人类专家的熟练程度解决复杂问题,标志着其从单纯模仿人类行为升级到展现真实的智能水平。这些AI不仅擅长对话,更具备了解决问题的能力,其推理和决策能力已接近人类水平。
在这一级别,人工智能可以应用于需要复杂推理和决策的领域,如医疗诊断、金融风险评估等。推理者能深入分析复杂数据,洞悉其中的模式,并基于逻辑和数据提供精准解决方案。– 比如DeepSeek的母公司幻方量化进行量化交易
DeepSeek-R1系列是基于V3开发的推理模型,它专注于数学、编程及自然语言推理,展现强大推理能力,在数学和编程基准测试中表现优异,已达L2(推理者)级别。
三、L3:智能体(Agents)
****L3:智能体(Agents)有哪些特点?AI系统能够承担复杂的任务、作出决策和适应不断变化的环境,并在无须持续人类监督的情况下自主行动。这一阶段的AI不仅具备推理能力,更能自主执行各类复杂的操作任务。
****这一级别的人工智能可以应用于自动驾驶、机器人控制等场景,实现自主行动和决策。例如,在智能家居领域,智能体能够根据个人习惯智能调节灯光、温度等居家环境;****而在自动驾驶领域,智能体则能确保车辆的安全、舒适行驶。
DeepSeek-V3则是在V2的基础上进行了更多的创新和改进,具备了一定的自主性和决策能力,能够在特定场景下完成长期任务,已处于L2级别(推理者)向L3级别(智能体)过渡的阶段,并且更接近L3级别的标准。
**
**
四、L4:创新者(Innovators)
**********L4:创新者(Innovators)有哪些特点?AI系统具有创造性和独创性,能够提出突破性的想法和解决方案。它们不仅能模仿人类的创造力,**更能突破思维的局限,提出令人耳目一新的创新理念。
在这一级别,人工智能可以辅助人类进行发明创造,推动多个领域的创新和进步。例如,在科学研究、艺术创作以及技术开发等多个领域,创新者均能发挥其独特价值,提供新的思路和方法。
五、L5:组织者(Organizations)
L5:组织者(Organizations)有哪些特点?**********AI系统不仅具备战略思维,还拥有实现组织目标所需的高效率和强适应性,能够管理复杂的系统******。它们能够灵活协调多个智能体,合理分配任务,实时监控进度,并依据实际情况作出迅速调整。****
在这一级别,人工智能可以承担组织和管理的工作,如企业运营、城市管理等领域。它可以帮助组织提高效率、优化决策,并应对各种复杂情况。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈