map
map会将⼀个函数映射到⼀个输⼊列表的所有元素上。
相当于批量输入收集批量输出。
⼤多数时候,使⽤匿名函数(lambda)来配合map。
# 最基本的方法
inputs = [1, 2, 3, 4, 5, 6]
outputs = []
for i in inputs:
outputs.append(i ** 3)
print(outputs)
进行简化
# 现在的方法
inputs = [1, 2, 3, 4, 5, 6]
outputs = list(map(lambda x: x ** 3, inputs))
print(outputs)
甚至可以批量输入一系列的函数。
# 批量输入一系列函数
def Func1(x):
return x * x
def Func2(x):
return x + x
FuncList = [Func1, Func2]
for i in range(5):
res = map(lambda x: x(i), FuncList)
print(list(res))
输出是一组列表:
[0, 0]
[1, 2]
[4, 4]
[9, 6]
[16, 8]
注意
在python2中map直接返回列表;
在python3中返回迭代器;
为了兼容python3, 需要list转换⼀下;
Filter
filter过滤列表中的元素
filter返回⼀个由所有符合要求的元素所构成的列表
符合要求:函数映射到该元素时返回值为True
filter类似于⼀个for循环,但它是⼀个内置函数,并且更快。
# filter例子
inputs = range(-10, 10)
outputs = list(filter(lambda x: x < 0, inputs))
print("The numbers which are less than 0 are: {}".format(outputs))
输出是:
The numbers which are less than 0 are: [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1]
注意
在python2中filter直接返回列表;
在python3中返回迭代器;
为了兼容python3, 需要list转换⼀下;
Reduce
当需要对⼀个列表进行⼀些计算并返回结果时,Reduce将会变得十分有用。
例如:计算一个整数列表的平方和。
# reduce例子
from functools import reduce
inputs = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
outputs = reduce(lambda x, y: x + y, inputs)
输出结果是:
print("和是:{}".format(outputs))