maker算法第五次CNN

本文详细介绍了CNN(卷积神经网络)的结构,包括卷积层如何提取特征,池化层如何进行下采样,全连接层在分类中的作用,以及激活函数在非线性转换中的重要性。同时,文章以猫狗分类为例,展示了CNN在图像识别领域的应用。
摘要由CSDN通过智能技术生成

CNN卷积神经网络(Convolutional Neural Network)
广泛运用于图像识别领域
CNN结构可以分为3层

  1. 卷积层:主要作用是提取特征
  2. 池化层:主要作用是下采样(downsampling),却不会破坏识别结果
  3. 全连接层:主要作用是分类
    举例:
    如何判断图片上是一只鸟
    通过卷积层来查找特征,然后通过全连接层来做分类判断这是一只鸟,而池化层则是为了让训练的参数更少,在保持采样不变的情况下,忽略掉一些信息。

1. 卷积层

那么卷基层是如何提取特征的呢?我们都知道卷积就是2个函数的叠加,应用在图像上,则可以理解为拿一个滤镜放在图像上,找出图像中的某些特征,而我们需要找到很多特征才能区分某一物体,所以我们会有很多滤镜,通过这些滤镜的组合,我们可以得出很多的特征。

用RGB的方式来表示图片
比如一张长度为1080,宽度为1024的图片,总共包含了1080 * 1024的像素,如果为RGB图片,因为RGB图片由3种颜色叠加而成,包含3个通道,因此我们需要用1080 * 1024 * 3的数组来表示RGB图片。
我们先从简单的情况开始考虑,假设我们有一组灰度图片,这样图片就可以表示为一个矩阵,假设我们的图片大小为5 * 5,那么我们就可以得到一个5 * 5的矩阵,接下来,我们用一组过滤器(Filter)来对图片过滤,过滤的过程就是求卷积的过程。假设我们的Filter的大小为3 * 3,我们从图片的左上角开始移动Filter,并且把每次矩阵相乘的结果记录

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值