Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

如图1所示,我们考虑单蜂窝网络中的IRS辅助下行通信,其中部署IRS以协助在给定频带上从多天线AP到K个单天线用户的通信。用户集合用k表示,AP点发射天线数用M表示,IRS反射单元数用N表示。IRS配备一个控制器,协调其在两种工作模式之间的切换,即用于信道估计的接收模式和用于数据传输的反射模式[8]。由于高路径损耗,假设被IRS反射两次或两次以上的信号的功率可以忽略,因此可以忽略。为了描述IRS带来的理论性能增益,我们假设所有信道的信道状态信息(CSI)在AP处是完全已知的,并且对所有信道采用准静态平坦衰落模型。由于IRS是一种被动反射设备,我们考虑了上行链路和下行链路传输的时分双工(TDD)协议,并假设基于上行链路训练的下行链路CSI采集的信道互易性。

从AP到IRS、从IRS到用户k、从AP到用户k的基带等效信道分别用G∈CN×M, hr,k H∈C1×N和hHd,k∈C1×M表示,其中k = 1,···,k。值得注意的是,在RFID通信中,AP通过IRS到每个用户的反射信道通常被称为二进反向散射信道[16],其行为与AP-user直接信道不同。具体来说,IRS的每个元件接收来自发射器的叠加多径信号,然后将组合信号以可调幅度和/或相位散射,就像来自单点源一样。设θ= [θ 1,···,θN],定义一个对角矩阵ω = diag(β1ejθ1,···,βNejθN) (j表示虚单位)作为IRS的反射系数矩阵,其中θn∈[0,2 π],βn∈[0,1]分别表示IRS的第N个元素的相移2和振幅反射系数3。因此,将复合AP-IRS-user通道建模为三个组件的串联,即AP-IRS链路、带相移的IRS反射和IRS-用户链路。
在本文中,我们考虑在每个用户分配一个专用波束形成矢量的AP处线性发射预编码。因此,AP处传输的复基带?K信号可以表示为x = K =1周sk,其中sk为用户K的传输数据,wk∈CM×1为对应的波束形成矢量。假设sk,k = 1,···,k为独立随机变量,均值为零,单位方差(归一化幂)为零。在用户k处从AP-user和AP-IRS-user通道接收到的信号表示为

y k = ( h r , k H Θ G + h d , k H ) ∑ j = 1 K w j s j + n k , k = 1 , ⋯   , K , \begin{equation*} y_{k}= (\boldsymbol {h}^{H}_{r,k} \mathbf \Theta \boldsymbol {G} + \boldsymbol {h}^{H}_{d,k}) \sum _{j=1}^{K}\boldsymbol {w}_{j}s_{j} + n_{k}, \quad k=1, \cdots, K,\tag{1}\end{equation*} yk=(hr,kHΘG+hd,kH)j=1Kwjsj+nk,k=1,,K,(1)

其中, n k ∼ C N ( 0 , σ k 2 ) n_{k} \sim \mathcal {CN}(0, \sigma ^{2}_{k}) nkCN(0,σk2) 表示用户 k k k 接收机处的加性高斯白噪声(AWGN)。因此,用户 k k k 的SINR为

SINR k = ∣ ( h r , k H Θ G + h d , k H ) w k ∣ 2 ∑ j ≠ k K ∣ ( h r , k H Θ G + h d , k H ) w j ∣ 2 + σ k 2 , ∀ k . \begin{equation*} \text {SINR}_{k} = \frac {|(\boldsymbol {h}^{H}_{r,k} \mathbf \Theta \boldsymbol {G}+\boldsymbol {h}^{H}_{d,k})\boldsymbol {w}_{k} |^{2}}{\sum _{j\neq k}^{K}|(\boldsymbol {h}^{H}_{r,k} \mathbf \Theta \boldsymbol {G}+\boldsymbol {h}^{H}_{d,k})\boldsymbol {w}_{j} |^{2} + \sigma ^{2}_{k}},\quad \forall k.\tag{2}\end{equation*} SINRk=j=kK(hr,kHΘG+hd,kH)wj2+σk2(hr,kHΘG+hd,kH)wk2,k.(2)

B. Problem Formulation

W = [ w 1 , ⋯   , w K ] ∈ C M × K \boldsymbol W= [{\boldsymbol w}_{1}, \cdots,{\boldsymbol w}_{K}]\in \mathbb {C}^{M\times K} W=[w1,,wK]CM×K H r = [ h r , 1 , ⋯   , h r , K ] ∈ C N × K \boldsymbol H_{r} = [{\boldsymbol h}_{r,1}, \cdots,{\boldsymbol h}_{r,K}]\in \mathbb {C}^{N\times K} Hr=[hr,1,,hr,K]CN×K,Hd=[hd,1,···,hd,K)∈CM×K。在本文中,我们的目标是通过联合优化AP点的发射波束形成和IRS的反射波束形成,以最小化AP点的总发射功率

(P1) : min ⁡ W , θ    ∑ k = 1 K ∥ w k ∥ 2 s . t .   ∣ ( h r , k H Θ G + h d , k H ) w k ∣ 2 ∑ j ≠ k K ∣ ( h r , k H Θ G + h d , k H ) w j ∣ 2  ⁣ +  ⁣ σ k 2 ≥ γ k ,   ∀ k ,   0 ≤ θ n ≤ 2 π , n = 1 , ⋯   , N , \begin{align*}\text {(P1)}:\quad \min _{ \boldsymbol W, \boldsymbol {\theta }} &~~\sum _{k=1}^{K}\|\boldsymbol {w}_{k}\|^{2} \tag{3}\\\mathrm {s.t.}&~\frac {|(\boldsymbol {h}^{H}_{r,k} \mathbf \Theta \boldsymbol {G}+\boldsymbol {h}^{H}_{d,k})\boldsymbol {w}_{k} |^{2}}{\sum _{j\neq k}^{K}|(\boldsymbol {h}^{H}_{r,k} \mathbf \Theta \boldsymbol {G}+\boldsymbol {h}^{H}_{d,k})\boldsymbol {w}_{j} |^{2} \!+ \! \sigma ^{2}_{k}}\geq \gamma _{k},~ \forall k, \quad \\ {}\tag{4}\\&~0\leq \theta _{n} \leq 2\pi, n=1,\cdots, N, \tag{5}\end{align*} (P1):W,θmins.t.  k=1Kwk2 j=kK(hr,kHΘG+hd,kH)wj2+σk2(hr,kHΘG+hd,kH)wk2γk, k, 0θn2π,n=1,,N,(3)(4)(5)

所有用户的单独SINR约束。据此,该问题表示为

其中 γ k > 0 \gamma _{k}>0 γk>0 为用户 k k k 的最小SINR要求。虽然(P1)的目标函数和(5)中的约束是凸的,但由于(4)中发射波束形成和相移耦合的非凸约束,求解(P1)具有挑战性。一般来说,对于这类非凸优化问题的最优求解,并没有标准的方法。然而,在下一节中,我们分别应用SDR和交替优化技术来近似求解单用户情况下的(P1),然后将其推广到多用户情况。在解决问题(P1)之前,我们提出了其可行性的充分条件如下。让 H = [ h 1 , ⋯   , h K ] ∈ C M × K \boldsymbol H= [{\boldsymbol h}_{1}, \cdots,{\boldsymbol h}_{K}]\in \mathbb {C}^{M\times K} H=[h1,,hK]CM×K,其中 h k H = h r , k H Θ G + h d , k H {\boldsymbol h}^{H}_{k} = \boldsymbol {h}^{H}_{r,k} \mathbf \Theta \boldsymbol {G}+\boldsymbol {h}^{H}_{d,k} hkH=hr,kHΘG+hd,kH

Proposition 1:如果 r a n k ( G H H r + H d ) = K {\mathrm{rank}}(\boldsymbol G^{H} \boldsymbol H_{r} + \boldsymbol H_{d})=K rank(GHHr+Hd)=K,问题(P1)对任何有限用户SINR目标 γ k \gamma _{k} γk 都是可行的

证明:当rank(GHHr+Hd)= K时,H =HrHΘG +HdH的(右)伪逆存在,且Θ= I, AP处的预编码矩阵W可设为

很容易验证,上述解决方案允许所有用户实现其对应的γk’s,从而(P1)是可行的。

由于增加了AP-IRS-user链接,与没有IRS的情况相比,命题1中的秩条件在IRS辅助系统中实际上更容易满足,即 r a n k ( H d ) = K {\mathrm{rank}}(\boldsymbol H_{d})=K rank(Hd)=K。例如,如果两个用户的AP-user直接通道位于同一方向,则 r a n k ( H d ) = K {\mathrm{rank}}(\boldsymbol H_{d})=K rank(Hd)=K 不成立。虽然IRS辅助系统中的等级条件可能仍然成立,因为这两个用户的合并AP-user通道(包括AP-user直接链接和AP-IRS-user反射链接)也不太可能对齐,因为有额外的IRS反射路径。

III.Single-User System

在本节中,我们考虑单用户设置,即 K = 1 K = 1 K=1,以获得最佳联合波束形成设计的重要见解。在这种情况下,不存在用户间干扰,因此(P1)简化为(通过删除用户指数)

(P2) :   min ⁡ w , θ   ∥ w ∥ 2   s . t .   ∣ ( h r H Θ G + h d H ) w ∣ 2 ≥ γ σ 2 ,  ⁣ ⁣ ⁣ ⁣ ⁣ s . t .   0 ≤ θ n ≤ 2 π , n = 1 , ⋯   , N . \begin{align*}&\text {(P2)}: ~\min _{\boldsymbol {w}, \boldsymbol {\theta }} ~ \|\boldsymbol {w}\|^{2} \tag{7}\\&~\quad \qquad \mathrm {s.t.}~| (\boldsymbol {h}^{H}_{r} \mathbf \Theta \boldsymbol {G}+\boldsymbol {h}^{H}_{d})\boldsymbol {w}|^{2} \geq \gamma \sigma ^{2}, \tag{8}\\&\!\!\!\!\!\hphantom {\qquad \qquad \mathrm {s.t.}~} 0\leq \theta _{n} \leq 2\pi, \quad n=1,\cdots, N. \tag{9}\end{align*} (P2): w,θmin w2 s.t. (hrHΘG+hdH)w2γσ2,s.t. 0θn2π,n=1,,N.(7)(8)(9)

虽然简化了很多,但问题(P2)仍然是一个非凸优化问题,因为(8)的左手边(LHS)相对于w和θ不是联合凹的。在下文中

在两个子节中,我们分别通过应用SDR和交替优化技术来解决(P2),下一节将扩展到一般的多用户系统。

A. SDR

不难验证,最优发射功率sat-

Power等效为r =dmaximizing合并信道的信道功率增益,即
max ⁡ θ   ∥ h r H Θ G + h d H ∥ 2   s . t .   0 ≤ θ n ≤ 2 π , ∀ n . \begin{align*}&\max _{\boldsymbol {\theta }} ~\|\boldsymbol {h}^{H}_{r} \mathbf \Theta \boldsymbol {G}+ \boldsymbol {h}^{H}_{d}\|^{2}\tag{13}\\&~\mathrm {s.t.}~ 0\leq \theta _{n} \leq 2\pi, \forall n. \tag{14}\end{align*} θmax hrHΘG+hdH2 s.t. 0θn2π,n.(13)(14)

v = [ v 1 , ⋯   , v N ] H \boldsymbol {v} = [v_{1}, \cdots, v_{N}]^{H} v=[v1,,vN]H,其中 v n = e j θ n v_{n} = e^{j\theta _{n}} vn=ejθn。那么,(14)中的约束等价于单位模约束:|vn|2= 1,∀n。通过应用变量变化 Φ = diag ( h r H ) G ∈ C N × M \boldsymbol {\Phi }=\text {diag}(\boldsymbol {h}^{H}_{r})\boldsymbol {G} \in \mathbb {C}^{N \times M} Φ=diag(hrH)GCN×M,我们得到 ∥ h r H Θ G + h d H ∥ 2 = ∥ v H Φ + h d H ∥ 2 \|\boldsymbol {h}^{H}_{r} \mathbf \Theta \boldsymbol {G} + \boldsymbol {h}^{H}_{d}\|^{2} =\|\boldsymbol {v}^{H}\boldsymbol {\Phi }+ \boldsymbol {h}^{H}_{d}\|^{2} hrHΘG+hdH2=vHΦ+hdH2。因此,问题(13)等价于

max ⁡ v   v H Φ Φ H v + v H Φ h d + h d H Φ H v + ∥ h d H ∥ 2   s . t .   ∣ v n ∣ 2 = 1 , ∀ n . \begin{align*}&\max _{\boldsymbol {v}} ~\boldsymbol {v}^{H}\boldsymbol {\Phi }\boldsymbol {\Phi }^{H}\boldsymbol {v} + \boldsymbol {v}^{H}\boldsymbol {\Phi }\boldsymbol {h}_{d}+\boldsymbol {h}^{H}_{d}\boldsymbol {\Phi }^{H} \boldsymbol {v} + \|\boldsymbol {h}^{H}_{d}\|^{2}\qquad \tag{15}\\&~\mathrm {s.t.}~ |v_{n}|^{2}=1,\quad \forall n. \tag{16}\end{align*} vmax vHΦΦHv+vHΦhd+hdHΦHv+hdH2 s.t. vn2=1,n.(15)(16)

注意,问题(15)是一个非凸二次约束二次规划(QCQP),它可以被重新表述为齐次QCQP[19]。具体来说,通过引入辅助变量t,问题(15)等价地写成

其中
R = [ Φ Φ H Φ h d h d H Φ H 0 ] , v ˉ = [ v t ] . \begin{equation*} \boldsymbol {R}=\begin{bmatrix} \boldsymbol {\Phi }\boldsymbol {\Phi }^{H} &\boldsymbol {\Phi }\boldsymbol {h}_{d} \\ \boldsymbol {h}^{H}_{d}\boldsymbol {\Phi }^{H} &0 \\ \end{bmatrix},\quad \bar{\boldsymbol {v}}=\begin{bmatrix} \boldsymbol {v} \\ t \\ \end{bmatrix}.\end{equation*} R=[ΦΦHhdHΦHΦhd0],vˉ=[vt].
然而,问题(17)在一般[19]中仍然是非凸的。请注意 v ˉ H R v ˉ = t r ( R v ˉ v ˉ H ) \bar{\boldsymbol {v}}^{H}\boldsymbol {R}\bar{\boldsymbol {v}}={\mathrm{tr}}(\boldsymbol {R}\bar{\boldsymbol {v}}\bar{\boldsymbol {v}}^{H}) vˉHRvˉ=tr(RvˉvˉH)。定义 V = v ˉ v ˉ H \boldsymbol {V}=\bar{\boldsymbol {v}}\bar{\boldsymbol {v}}^{H} V=vˉvˉH,这需要满足 V ⪰ 0 \boldsymbol {V}\succeq \boldsymbol {0} V0 r a n k ( V ) = 1 {\mathrm{rank}}(\boldsymbol {V})=1 rank(V)=1。由于 rank-one 约束是非凸的,我们使用SDR来放松这个约束。因此,问题(17)被简化为

max ⁡ V   t r ( R V ) + ∥ h d H ∥ 2   s . t .   V n , n = 1 , n = 1 , ⋯   , N + 1 , s . t .   V ⪰ 0. \begin{align*}&\max _{\boldsymbol {V}} ~{\mathrm{tr}}(\boldsymbol {RV}) + \|\boldsymbol {h}^{H}_{d}\|^{2} \tag{19}\\&~\mathrm {s.t.}~ \boldsymbol {V}_{n,n} = 1,\quad n=1,\cdots, N+1, \tag{20}\\&\hphantom {\mathrm {s.t.}~}\boldsymbol {V} \succeq 0. \tag{21}\end{align*} Vmax tr(RV)+hdH2 s.t. Vn,n=1,n=1,,N+1,s.t. V0.(19)(20)(21)

由于问题(19)是一个凸半定规划(SDP),它可以通过现有的凸优化求解器(如CVX[20])进行优化求解。一般情况下,松弛问题(19)可能不会导致秩一解,即秩(V) = 1,这意味着问题(19)的最优目标值只服务于问题(17)的上界。因此,需要额外的步骤来从获得的问题(19)的高阶解构造一个秩一解,而细节可以在[1]中找到,因此在这里省略。研究表明,这种SDR方法加上足够多的随机化,可以保证问题的最优目标值至少是π -近似(19)[19]。

求出 V \boldsymbol {V} V 后, 对其作 EVD分解 得到 V = U Σ U H \boldsymbol{V}=\boldsymbol{U} \Sigma \boldsymbol{U}^{H} V=UΣUH, 然后获得向量 v ˉ = U Σ 1 / 2 r \bar{\boldsymbol{v}}= \boldsymbol{U} \Sigma^{1 / 2} \boldsymbol{r} vˉ=UΣ1/2r, 其中 r ∈ C N ( 0 , I N + 1 ) \boldsymbol{r} \in \mathcal{C} \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{N+1}\right) rCN(0,IN+1)。 再从由不同的 r \boldsymbol{r} r 得到的所有 v ˉ \bar{\boldsymbol{v}} vˉ 中, 选出最大化 v ‾ H R v ˉ \overline{\boldsymbol{v}}^{H} \boldsymbol{R} \bar{\boldsymbol{v}} vHRvˉ v ˉ \bar{\boldsymbol{v}} vˉ, 最后再人为地将 v = e j arg ⁡ ( [ v ˉ v ˉ N + 1 ] ( 1 : N ) ) \boldsymbol{v}=e^{j \arg \left(\left[\frac{\bar{\boldsymbol{v}}}{\bar{\boldsymbol{v}}_{N+1}}\right]_{(1: N)}\right)} v=ejarg([vˉN+1vˉ](1:N)), 即满足恒模约束。

function [v, lower_bound] = SDR_solving(hr, G, hd, N)
    L = 1000; % 高斯随机化过程次数
    Phi = diag(hr)*G;
    R = [Phi*Phi' Phi*hd'; hd*Phi' 0];
    cvx_begin sdp quiet
        variable V(N+1,N+1) hermitian
        maximize(real(trace(R*V))+norm(hd)^2);
        subject to
            diag(V) == 1;
            V ==  hermitian_semidefinite(N+1);
    cvx_end
    
    lower_bound = cvx_optval;
    % 高斯随机化过程
    %% method 1
    max_F = 0;
    max_v = 0;
    [U, Sigma] = eig(V);
    for l = 1 : L
        r = sqrt(2) / 2 * (randn(N+1, 1) + 1j * randn(N+1, 1));
        v = U * Sigma^(0.5) * r;
        if v' * R * v > max_F
            max_v = v;
            max_F = v' * R * v;
        end
    end
    
    v = exp(1j * angle(max_v / max_v(end)));
    v = v(1 : N);
end

在这里插入图片描述

B. Alternating Optimization

为了实现比上一小节中基于sdr的解决方案更低的复杂度,我们在本小节中提出了一种基于交替优化的备选次优算法。具体来说,在AP处的发射波束形成方向和发射功率随着IRS处的相移以交替的方式迭代优化,直到实现收敛。
设w = Pw¯,其中w¯表示发射波束形成方向,P为发射功率。对于固定的发射波束形成方向w,¯(P2)被简化为一个联合发射功率和相移的优化问题,可以表示为(类似于(10)和(13)),

虽然是非凸的,但上述问题通过利用其目标函数的特殊结构,可以得到一个闭式解。具体来说,我们有以下不等式:

其中(a)是由于三角不等式,当且仅当arg(hHrΘG w)¯=arg(hHdw)¯? ϕ为0时,等式成立。接下来,我们表明总是存在一个解θ满足(a)的等式以及(23)中的相移约束。设hHrΘGw =vHa其中v =[ejθ1,···,ejθN]H且a =diag(hrH)Gw.¯With(24),问题(22)等价于

不难看出,上述问题的最优解是由v∗=ej(ϕ0−arg(a)) =ej(ϕ0−arg(diag(hHr)Gw))¯。因此,IRS处的第n相移为

其中hHn,r是hHr的第n个元素,gnH是g的第n个行向量。注意gnHw¯结合了transmit

IV.Multiuser System

在本节中,我们考虑一般的多用户设置。具体来说,我们提出了两种有效的算法,通过在单用户情况下泛化这两种方法来次优求解(P1)。

A. Alternating Optimization Algorithm

该算法利用了与单用户情况类似的交替优化,而在AP处的发射波束形成采用了众所周知的最小均方误差(MMSE)准则来处理多用户干扰,而不是在无干扰的单用户情况下使用MRT。对于给定相移 θ {\boldsymbol \theta } θ,从AP到用户 k k k 的组合信道由 h k H = h r , k H Θ G + h d , k H {\boldsymbol {h}}^{H}_{k}= \boldsymbol {h}^{H}_{r,k} \mathbf \Theta \boldsymbol {G}+\boldsymbol {h}^{H}_{d,k} hkH=hr,kHΘG+hd,kH 给出。由此,问题(P1)简化为

(P3) :   min ⁡ W   ∑ k = 1 K ∥ w k ∥ 2   s . t .   ∣ h k H w k ∣ 2 ∑ j ≠ k K ∣ h k H w j ∣ 2 + σ k 2 ≥ γ k , ∀ k . \begin{align*}&\text {(P3)}: ~\min _{ \boldsymbol W} ~\sum _{k=1}^{K}\|\boldsymbol {w}_{k}\|^{2} \tag{36}\\&\qquad ~\quad \mathrm {s.t.}~\frac {|{\boldsymbol {h}}^{H}_{k}\boldsymbol {w}_{k} |^{2}}{\sum _{j\neq k}^{K}|{\boldsymbol {h}}^{H}_{k}\boldsymbol {w}_{j} |^{2} + \sigma ^{2}_{k}}\geq \gamma _{k},\quad \forall k. \tag{37}\end{align*} (P3): Wmin k=1Kwk2 s.t. j=kKhkHwj2+σk2hkHwk2γk,k.(36)(37)

需要注意的是,(P3)是多用户MISO下行广播信道中常见的功率最小化问题,可以通过二阶锥规划(SOCP)[22]、SDP[23]或基于上下行对偶性的定点迭代算法[24]、[25]来有效解决。此外,很容易验证,在问题(P3)的最优解处,(37)中的所有SINR约束都满足等式。

另一方面,对于给定的传输波束成形 W \boldsymbol W W,问题(P1)被简化为可行性检验问题。

h d , k H w j = b k , j \boldsymbol {h}^{H}_{d,k}\boldsymbol {w}_{j} ={b}_{k,j} hd,kHwj=bk,j v n = e j θ n v_{n}=e^{j\theta _{n}} vn=ejθn。通过应用变量的变化 h r , k H Θ G w j = v H a k , j \boldsymbol {h}^{H}_{r,k} \mathbf \Theta \boldsymbol {G}\boldsymbol {w}_{j} =\boldsymbol {v}^{H}\boldsymbol {a}_{k,j} hr,kHΘGwj=vHak,j,其中 v = [ e j θ 1 , ⋯   , e j θ N ] H \boldsymbol {v} = [e^{j\theta _{1}}, \cdots, e^{j\theta _{N}}]^{H} v=[ejθ1,,ejθN]H a k , j = diag ( h r , k H ) G w j \boldsymbol {a}_{k,j}=\text {diag}(\boldsymbol {h}^{H}_{r,k})\boldsymbol {G}\boldsymbol {w}_{j} ak,j=diag(hr,kH)Gwj,问题(P1)被简化为

Find  v   s . t .   ∣ v H a k , k + b k , k ∣ 2 ∑ j ≠ k K ∣ v H a k , j + b k , j ∣ 2 + σ k 2 ≥ γ k , ∀ k , s . t .   ∣ v n ∣ = 1 , n = 1 , ⋯   , N . \begin{align*}&\text {Find}~ \boldsymbol {v} \tag{38}\\&~\mathrm {s.t.}~\frac {|\boldsymbol {v}^{H}\boldsymbol {a}_{k,k} + b_{k,k} |^{2}}{\sum _{j\neq k}^{K}|\boldsymbol {v}^{H}\boldsymbol {a}_{k,j} + b_{k,j} |^{2} + \sigma ^{2}_{k}}\geq \gamma _{k},\quad \forall k, \tag{39}\\&\hphantom {\mathrm {s.t.}~} |v_{n}|=1, \quad n=1,\cdots, N. \tag{40}\end{align*} Find v s.t. j=kKvHak,j+bk,j2+σk2vHak,k+bk,k2γk,k,s.t. vn=1,n=1,,N.(38)(39)(40)

虽然上述问题与多天线中继广播信道的中继波波形优化问题类似[26],但由于(39)中的公共向量 v \boldsymbol v v 的相位旋转可能无法使(39)中的 v H a k , k + b k , k \boldsymbol {v}^{H}\boldsymbol {a}_{k,k} + b_{k,k} vHak,k+bk,k 对所有用户都是实数,因此不能直接转化为SOCP优化问题。而且,它在(40)中具有非凸的单位模约束。然而,通过观察(39)和(40)约束可以转化为二次约束,我们应用SDR技术来有效地近似求解问题(38)。

具体地,通过引入辅助变量 t t t,(38)可以等价地写成

Find  v   s . t .   v ˉ H R k , k v ˉ + ∣ b k , k ∣ 2 ≥ γ k ∑ j ≠ k K v ˉ H R k , j v ˉ s . t .   +   γ k ( ∑ j ≠ k K ∣ b k , j ∣ 2 + σ k 2 ) , ∀ k , s . t .   ∣ v n ∣ 2 = 1 , n = 1 , ⋯   , N + 1 , \begin{align*}&\text {Find} ~\boldsymbol {v}\tag{41}\\&~\mathrm {s.t.}~ {\bar{\boldsymbol v}}^{H} \boldsymbol R_{k,k}{ {\bar{\boldsymbol v}}} + | b_{k,k}|^{2} \geq \gamma _{k}\sum _{j\neq k}^{K} {\bar{\boldsymbol v}}^{H} \boldsymbol R_{k,j}{ {\bar{\boldsymbol v}}} \\&\hphantom {\mathrm {s.t.}~}\quad +\, \gamma _{k}\left({\sum _{j\neq k}^{K} | b_{k,j}|^{2} + \sigma ^{2}_{k}}\right), \quad \forall k, \tag{42}\\&\hphantom {\mathrm {s.t.}~} |v_{n}|^{2}=1,\quad n=1,\cdots, N+1,\tag{43}\end{align*} Find v s.t. vˉHRk,kvˉ+bk,k2γkj=kKvˉHRk,jvˉs.t. +γk j=kKbk,j2+σk2 ,k,s.t. vn2=1,n=1,,N+1,(41)(42)(43)
其中
R k , j = [ a k , j a k , j H a k , j b k , j H a k , j H b k , j 0 ] , v ˉ = [ v t ] . \begin{equation*} \boldsymbol {R}_{k,j}=\begin{bmatrix} \boldsymbol {a}_{k,j}\boldsymbol {a}_{k,j}^{H} &\boldsymbol {a}_{k,j}b^{H}_{k,j} \\ \boldsymbol {a}_{k,j}^{H}b_{k,j} &0 \\ \end{bmatrix},\quad \bar{\boldsymbol {v}}=\begin{bmatrix} \boldsymbol {v} \\ t \\ \end{bmatrix}.\end{equation*} Rk,j=[ak,jak,jHak,jHbk,jak,jbk,jH0],vˉ=[vt].

请注意 v ˉ H R k , j v ˉ = t r ( R k , j v ˉ v ˉ H ) \bar{\boldsymbol {v}}^{H}\boldsymbol {R}_{k,j}\bar{\boldsymbol {v}}={\mathrm{tr}}(\boldsymbol {R}_{k,j}\bar{\boldsymbol {v}}\bar{\boldsymbol {v}}^{H}) vˉHRk,jvˉ=tr(Rk,jvˉvˉH)。定义 v ˉ H R k , j v ˉ = t r ( R k , j v ˉ v ˉ H ) \bar{\boldsymbol {v}}^{H}\boldsymbol {R}_{k,j}\bar{\boldsymbol {v}}={\mathrm{tr}}(\boldsymbol {R}_{k,j}\bar{\boldsymbol {v}}\bar{\boldsymbol {v}}^{H}) vˉHRk,jvˉ=tr(Rk,jvˉvˉH),这需要满足 V ⪰ 0 \boldsymbol {V}\succeq \boldsymbol {0} V0 r a n k ( V ) = 1 {\mathrm{rank}}(\boldsymbol {V})=1 rank(V)=1。由于秩一约束是非凸的,我们放松这个约束,然后将问题(41)转化为

(P4) :  Find  V   s . t .   t r ( R k , k V ) + ∣ b k , k ∣ 2 ≥ γ k ∑ j ≠ k K t r ( R k , j V ) s . t .   +   γ k ( ∑ j ≠ k K ∣ b k , j ∣ 2 + σ k 2 ) , ∀ k , s . t .   V n , n = 1 , n = 1 , ⋯   , N + 1 , s . t .   V ⪰ 0. \begin{align*}&\hspace{-2.5pc}\text {(P4)}: ~\text {Find} ~\boldsymbol {V}\tag{44}\\&~\mathrm {s.t.}~{\mathrm{tr}}({\boldsymbol {R}_{k,k}}{\boldsymbol V}) + | b_{k,k}|^{2} \geq \gamma _{k}\sum _{j\neq k}^{K} {\mathrm{tr}}({\boldsymbol {R}_{k,j}}{\boldsymbol V}) \\&\hphantom {\mathrm {s.t.}~}\quad +\, \gamma _{k}\left({\sum _{j\neq k}^{K} | b_{k,j}|^{2} + \sigma ^{2}_{k}}\right), \quad \forall k, \tag{45}\\&\hphantom {\mathrm {s.t.}~} \boldsymbol {V}_{n,n} = 1, n=1,\cdots, N+1, \tag{46}\\&\hphantom {\mathrm {s.t.}~}\boldsymbol {V} \succeq 0. \tag{47}\end{align*} (P4): Find V s.t. tr(Rk,kV)+bk,k2γkj=kKtr(Rk,jV)s.t. +γk j=kKbk,j2+σk2 ,k,s.t. Vn,n=1,n=1,,N+1,s.t. V0.(44)(45)(46)(47)

% 当给定AP的波束向量时,优化IRS的相位v,求解问题(P4')
function v = IRS_MultiUser(W,Hr,Hd,G,N,Uk,gamma)
    L = 1000; % 高斯随机化过程次数
    b = Hd'*W;
    R = cell(Uk,Uk);
    for k=1:Uk
        for j=1:Uk
            a = diag(Hr(:,k)')*G*W(:,j);
            R{k,j} = [a*a' a*b(k,j)';a'*b(k,j) 0];
        end
    end
    cvx_begin quiet
        variable V(N+1,N+1) hermitian
        variable alpha1(Uk,1)
        expression RV(Uk,Uk)
        for k=1:Uk
            for j=1:Uk
                RV(k,j)=trace(R{k,j}*V);
            end
        end
        maximize(sum(alpha1))
        subject to
            for i=1:Uk
                trace(R{i,i}*V)+square_abs(b(i,i))>=gamma*sum(RV(i,[1:i-1 i+1:Uk]))+gamma*(b(i,[1:i-1 i+1:Uk])*b(i,[1:i-1 i+1:Uk])'+1) + alpha1(i);
                alpha1(i) >= 0;
            end
            diag(V) == 1;
            V ==  hermitian_semidefinite(N+1);      
    cvx_end
    % 高斯随机化过程
    max_F = 0;
    max_v = 0;
    [U, Sigma] = eig(V);
    for l = 1 : L
        r = sqrt(2) / 2 * (randn(N+1, 1) + 1j * randn(N+1, 1));
        v = U * Sigma^(0.5) * r;
        s = 0;
        Vp = v*v';
        RVp = zeros(Uk,Uk);
        for k=1:Uk
            for j=1:Uk
                RVp(k,j)=trace(R{k,j}*Vp);
            end
        end
        for i=1:Uk
            s = s + real(v'*R{i,i}*v+b(i,i)'*b(i,i)-gamma*sum(RVp(i,[1:i-1 i+1:Uk]))-gamma*(b(i,[1:i-1 i+1:Uk])*b(i,[1:i-1 i+1:Uk])'+1));
        end
        if real(s)> max_F
            max_v = v;
            max_F = real(s);
        end
    end
    
    v = exp(1j * angle(max_v / max_v(end)));
    v = v(1 : N);
end

不难观察到,问题(P4)是一个SDP,因此可以通过现有的凸优化求解器(如CVX[20])进行优化求解。虽然SDR对于问题(41)可能不紧,但基于求解(P4)得到的高阶解,可以类似地使用高斯随机化来获得问题(41)的可行解。此外,值得指出的是,(45)中的SINR等式约束并不一定满足,由于所有用户的共同相移矩阵 V \boldsymbol V V

为了获得更好的收敛解,我们进一步将问题(P4)转化为一个目标明确的优化问题,即获得一个通常更有效的相移解以降低发射功率。其基本原理是,对于发射波束形成优化问题,即(P3),在最优解处,所有SINR约束都是有效的。因此,优化相移以强制用户可实现的SINR大于(P4)中的SINR目标,直接导致(P3)中的发射功率降低(例如,通过简单地缩小发射波束形成的功率)。为此,问题(P4)被转化为以下问题

(P4’) : max ⁡ V , { α k }   ∑ k = 1 K α k   s . t .   t r ( R k , k V ) + ∣ b k , k ∣ 2 ≥ γ k ∑ j ≠ k K t r ( R k , j V )   s . t .   +   γ k ( ∑ j ≠ k K ∣ b k , j ∣ 2 + σ k 2 ) + α k , ∀ k ,   s . t .   V n , n = 1 , n = 1 , ⋯   , N + 1 ,   s . t .   V ⪰ 0 , α k ≥ 0 , ∀ k , \begin{align*}&\hspace{-2.5pc}\text {(P4')}: \max _{\boldsymbol V, \{\alpha _{k}\} } ~\sum _{k=1}^{K} \alpha _{k} \tag{48}\\&~\mathrm {s.t.}~{\mathrm{tr}}({\boldsymbol {R}_{k,k}}{\boldsymbol V}) + | b_{k,k}|^{2} \geq \gamma _{k}\sum _{j\neq k}^{K} {\mathrm{tr}}({\boldsymbol {R}_{k,j}}{\boldsymbol V}) \\&\hphantom {~\mathrm {s.t.}~}\quad +\, \gamma _{k}\left({\sum _{j\neq k}^{K} | b_{k,j}|^{2} + \sigma ^{2}_{k}}\right) + \alpha _{k}, \quad \forall k, \tag{49}\\&\hphantom {~\mathrm {s.t.}~} \boldsymbol {V}_{n,n} = 1, \quad n=1,\cdots, N+1, \tag{50}\\&\hphantom {~\mathrm {s.t.}~}\boldsymbol {V} \succeq 0, \alpha _{k} \geq 0, \quad \forall k, \tag{51}\end{align*} (P4’):V,{αk}max k=1Kαk s.t. tr(Rk,kV)+bk,k2γkj=kKtr(Rk,jV) s.t. +γk j=kKbk,j2+σk2 +αk,k, s.t. Vn,n=1,n=1,,N+1, s.t. V0,αk0,k,(48)(49)(50)(51)

其中松弛变量 α k \alpha _{k} αk 可以解释为相移优化中用户 k k kSINR residual。注意(P4)和(P4’)具有相同的可行V集合,而(P4’)在收敛解方面比(P4)更高效,这一点将在 Section V-B 通过仿真加以验证。

  • 10
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WHS-_-2022

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值