嵌入层(Embedding Layer)将输入数据转换为高维向量表示的详细解释(附有嵌入矩阵W的生成过程)
嵌入层(Embedding Layer)是一种将输入数据映射到高维向量空间的技术。它在自然语言处理和时间序列分析等任务中非常常见。下面是嵌入层如何工作的详细解释:
1. 嵌入层的定义
嵌入层是一种查找表,将离散的输入数据(如词或时间序列中的特征)映射到一个连续的高维向量空间中。这个过程可以看作是将每个离散的输入映射为一个向量。
2. 嵌入矩阵
嵌入矩阵 W W W 是嵌入层的核心。假设嵌入矩阵的维度为 V × D V \times D V×D:
- V V V 是输入数据的词汇量或特征的数量。
- D D D 是嵌入向量的维度。
每个输入索引 i i i 都对应嵌入矩阵中的一个向量 W [ i ] W[i] W[i],这个向量的维度为 D D D。
3. 嵌入过程
嵌入过程包括以下几个步骤:
-
输入数据的索引化:
- 输入数据通常以索引的形式表示,例如时间序列中的每个时间点可以用一个索引表示。
-
查找嵌入向量:
- 对于每个输入索引,从嵌入矩阵 W W W 中查找对应的嵌入向量。
- 例如,假设输入数据的索引为 i i i,则对应的嵌入向量为 W [ i ] W[i] W[i]。
-
输出嵌入向量:
- 每个输入索引都被映射为一个高维向量,这些向量构成嵌入层的输出。
具体例子
假设有一个简单的时间序列输入数据,表示为索引 [ 1 , 2 , 3 ] [1, 2, 3] [