讲透一个强大算法模型,Transformer !!

讲透一个强大算法模型,Transformer !!

哈喽,我是cos大壮~

好像一直以来都没有和大家讨论过一个贼牛的模型 – Transformer!

首先,咱们先用很直白的语言描述一下:想象你在读一本书,每一页都有很多词。如果你每次只能看到一个词,那么理解整本书会很慢。而Transformer模型就像是你有一个超能力,可以同时看到整页的所有词,还能根据上下文判断哪些词更重要,这样你就能更快更准确地理解书的内容。

下面,咱们从各方面进行对 Transformer 解释,和大家一起学习一下~

基本概念

Transformer模型是一种用于处理语言数据的神经网络模型,非常适合用于翻译、文本生成和理解等任务。它是在2017年由谷歌的研究团队提出的,已经成为自然语言处理(NLP)领域的主流方法。

下面,从是什么?结构组成、注意力机制、多头注意力先进行解释~

是什么?

Transformer模型是一种深度学习模型,用于理解和生成自然语言。简单来说,它是一种能读懂人类语言并生成类似语言的计算机模型。

结构组成

Transformer模型主要由两个部分组成:编码器(Encoder)和解码器(Decoder)。编码器负责读取和理解输入文本,解码器负责生成输出文本。它们是通过一种叫做“注意力机制”(Attention Mechanism)来相互作用的。

注意力机制

注意力机制是Transformer模型的核心。它的作用是让模型能够“关注”输入数据的不同部分,而不是一次只处理一个词。比如,当模型在处理一句话时,它可以同时考虑句子中所有的词,而不是一个一个地看过去。这种机制使得模型在处理长句子时更加有效。

多头注意力 Transformer模型还有一个重要特性叫做“多头注意力”(Multi-head Attention)。这意味着模型可以在不同的“头”上进行多个注意力操作,从而捕捉到更多的信息。这就像同时有多个视角在看同一个东西,每个视角都能看到一些不同的细节。

那么,为什么 Transformer如此重要?!

首先是,高效处理长文本

传统的RNN(循环神经网络)在处理长文本时效率较低,而Transformer模型通过并行处理和注意力机制,可以更高效地处理长文本。

其次,更好的表现

Transformer模型在很多NLP任务中表现优异,比如机器翻译、文本摘要和问答系统等。它不仅速度快,而且准确率高。

总的来说,Transformer模型通过其独特的注意力机制和结构设计,使得它在处理自然语言时比传统方法更加高效和准确,是现代NLP任务中非常非常重要的一项技术。

理论基础

为了便于理解,下面我们会分为以下几个部分进行讲解:

  • 输入表示

  • 注意力机制

  • 多头注意力

  • 前馈神经网络

  • 位置编码

  • 整个Transformer整体架构

1. 输入表示(Input Representation)

输入文本首先需要转换为向量形式。通常,我们使用词嵌入(Word Embeddings)来表示每个单词。假设输入句子长度为 ,词嵌入的维度为 ,则输入可以表示为一个 的矩阵 。

2. 注意力机制(Attention Mechanism)

注意力机制是Transformer的核心。给定输入序列的表示 ,我们计算三个矩阵:查询矩阵(Query)、键矩阵(Key)和值矩阵(Value)。

  • 查询矩阵

  • 键矩阵

  • 值矩阵

其中, 、 和 是可训练的权重矩阵。

2.1 计算注意力得分

注意力得分通过点积计算得到:

这里, 是键矩阵 的维度。点积得到的结果除以 是为了防止数值过大引起的梯度消失问题。

2.2 详细步骤
  1. 计算点积

  2. 除以

  3. 应用 softmax: ,得到注意力权重矩阵

  4. 加权求和

3. 多头注意力机制(Multi-head Attention)

多头注意力机制是将输入分成多个头,每个头进行独立的注意力计算,然后将结果拼接起来并投影到输出空间。

3.1 分头计算

假设有 个头,每个头的维度为 :

每个头独立计算注意力:

3.2 拼接与线性变换

将所有头的输出拼接起来:

其中 是可训练的投影矩阵。

4. 前馈神经网络(Feed Forward Neural Network)

每个注意力头的输出会通过一个前馈神经网络进行进一步处理。前馈神经网络由两个线性变换和一个ReLU激活函数组成:

其中, 和 是权重矩阵, 和 是偏置。

5. 位置编码(Positional Encoding)

由于Transformer没有使用传统的RNN或CNN架构,因此需要添加位置编码来让模型获取序列信息。位置编码可以通过正弦和余弦函数生成:

对于输入位置 和维度 :

将位置编码添加到输入嵌入向量中:

6. Transformer整体架构

一个完整的Transformer模型由多个编码器层和解码器层组成。

6.1 编码器层(Encoder Layer)

每个编码器层包括以下几个步骤:

  1. 多头注意力机制:

  2. 残差连接和层归一化:

  3. 前馈神经网络:

  4. 残差连接和层归一化:

6.2 解码器层(Decoder Layer)

每个解码器层与编码器层类似,但多了一个编码器-解码器注意力层:

  1. 自注意力机制(Masked MultiHead Attention):

  2. 残差连接和层归一化:

  3. 编码器-解码器注意力机制: (这里 是解码器的输出, 和 是编码器的输出)

  4. 残差连接和层归一化:

  5. 前馈神经网络:

  6. 残差连接和层归一化:

7. 总结

  • 输入嵌入:将输入文本转化为嵌入向量,加上位置编码。

  • 多头注意力机制:计算查询、键和值的注意力,捕捉输入的不同部分。

  • 前馈神经网络:通过两个线性变换和ReLU激活处理注意力输出。

  • 残差连接和层归一化:保持网络的稳定性和信息流动。

  • 编码器和解码器堆叠:多个编码器层和解码器层堆叠形成完整的Transformer模型。

这种架构使得Transformer模型在处理自然语言任务时表现出色,能够高效处理长文本并生成高质量的文本输出。

完整案例

下面,咱们把Transformer基本的框架和一些关键代码分享给大家,大家可以开始构建和理解。

首先,我们需要导入必要的库和数据集。数据集可以是情感分析的IMDB电影评论数据集。

有需要数据集的同学,可以点击名片,回复「数据集」即可~

import numpy as np   import pandas as pd   import tensorflow as tf   from sklearn.model_selection import train_test_split   from tensorflow.keras.preprocessing.text import Tokenizer   from tensorflow.keras.preprocessing.sequence import pad_sequences      df = pd.read_csv('IMDB Dataset.csv')      # 数据预处理   df['text'] = df['review'].str.lower()  # 将文本转换为小写   df['text'] = df['text'].str.replace('<br />', ' ')  # 清洗HTML标签      # 划分训练集和测试集   train_texts, val_texts, train_labels, val_labels = train_test_split(df['text'], df['sentiment'], test_size=0.2, random_state=42)   

数据处理

在Transformer模型中,文本数据需要转换为数字序列。这里使用Tokenizer来进行文本向量化。

# 设定参数   max_len = 200  # 句子的最大长度   vocab_size = 10000  # 词汇表的大小   embedding_dim = 128  # 词嵌入的维度      # 实例化和拟合Tokenizer   tokenizer = Tokenizer(num_words=vocab_size, oov_token='<OOV>')   tokenizer.fit_on_texts(train_texts)      # 序列化文本   train_sequences = tokenizer.texts_to_sequences(train_texts)   val_sequences = tokenizer.texts_to_sequences(val_texts)      # 填充序列   train_padded = pad_sequences(train_sequences, maxlen=max_len, padding='post', truncating='post')   val_padded = pad_sequences(val_sequences, maxlen=max_len, padding='post', truncating='post')   

构建Transformer模型

以下是一个简化的Transformer模型示例,包含Self-Attention层、Feedforward层和残差连接。

from tensorflow.keras.layers import Input, Dense, Embedding, GlobalAveragePooling1D, Dropout   from tensorflow.keras.layers import LayerNormalization, MultiHeadAttention, Dense, GlobalAveragePooling1D   from tensorflow.keras.models import Model      class MultiHeadSelfAttention(tf.keras.layers.Layer):       def __init__(self, embed_dim, num_heads=8):           super(MultiHeadSelfAttention, self).__init__()           self.embed_dim = embed_dim           self.num_heads = num_heads           self.head_dim = embed_dim // num_heads                      assert embed_dim % num_heads == 0                      self.query_dense = Dense(embed_dim)           self.key_dense = Dense(embed_dim)           self.value_dense = Dense(embed_dim)           self.combine_heads = Dense(embed_dim)              def call(self, inputs):           query = self.query_dense(inputs)           key = self.key_dense(inputs)           value = self.value_dense(inputs)                      query = self.split_heads(query)           key = self.split_heads(key)           value = self.split_heads(value)                      scaled_attention = self.self_attention(query, key, value)           scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])           original_shape = tf.shape(scaled_attention)           scaled_attention = tf.reshape(scaled_attention,                                          (original_shape[0], original_shape[1], self.embed_dim))                      outputs = self.combine_heads(scaled_attention)           return outputs              def split_heads(self, x):           batch_size = tf.shape(x)[0]           x = tf.reshape(x, (batch_size, -1, self.num_heads, self.head_dim))           return tf.transpose(x, perm=[0, 2, 1, 3])              def self_attention(self, query, key, value):           matmul_qk = tf.matmul(query, key, transpose_b=True)           depth = tf.cast(tf.shape(key)[-1], tf.float32)           logits = matmul_qk / tf.math.sqrt(depth)           attention_weights = tf.nn.softmax(logits, axis=-1)           output = tf.matmul(attention_weights, value)           return output      class TransformerBlock(tf.keras.layers.Layer):       def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):           super(TransformerBlock, self).__init__()           self.att = MultiHeadSelfAttention(embed_dim, num_heads)           self.ffn = tf.keras.Sequential([               Dense(ff_dim, activation='relu'),               Dense(embed_dim)           ])           self.layernorm1 = LayerNormalization(epsilon=1e-6)           self.layernorm2 = LayerNormalization(epsilon=1e-6)           self.dropout1 = Dropout(rate)           self.dropout2 = Dropout(rate)              def call(self, inputs, training=None):           attn_output = self.att(inputs)           attn_output = self.dropout1(attn_output, training=training)           out1 = self.layernorm1(inputs + attn_output)                      ffn_output = self.ffn(out1)           ffn_output = self.dropout2(ffn_output, training=training)           return self.layernorm2(out1 + ffn_output)         # 构建Transformer模型   embed_dim = embedding_dim   num_heads = 8   ff_dim = 128      inputs = Input(shape=(max_len,))   embedding_layer = Embedding(vocab_size, embed_dim)(inputs)   transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim)(embedding_layer)   pooling_layer = GlobalAveragePooling1D()(transformer_block)   outputs = Dense(1, activation='sigmoid')(pooling_layer)      model = Model(inputs=inputs, outputs=outputs)   

训练和评估模型

import tensorflow as tf   from tensorflow.keras.callbacks import ModelCheckpoint      # 编译模型   model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])      # 定义回调函数   callbacks = [       tf.keras.callbacks.EarlyStopping(patience=3, monitor='val_loss'),       ModelCheckpoint('./transformer_model.weights.h5', save_best_only=True, save_weights_only=True)   ]      # 训练模型时使用这些回调函数   history = model.fit(train_padded, train_labels, epochs=20, batch_size=32,                       validation_data=(val_padded, val_labels), callbacks=callbacks)      # 评估模型   model.evaluate(val_padded, val_labels)   

可视化训练过程

import matplotlib.pyplot as plt      # 绘制训练 & 验证的准确率值   plt.plot(history.history['accuracy'])   plt.plot(history.history['val_accuracy'])   plt.title('Model accuracy')   plt.ylabel('Accuracy')   plt.xlabel('Epoch')   plt.legend(['Train', 'Val'], loc='upper left')   plt.show()      # 绘制训练 & 验证的损失值   plt.plot(history.history['loss'])   plt.plot(history.history['val_loss'])   plt.title('Model loss')   plt.ylabel('Loss')   plt.xlabel('Epoch')   plt.legend(['Train', 'Val'], loc='upper left')   plt.show()   

上面整个代码中,构建了一个简单的Transformer模型,并用IMDB数据集进行了文本分类。大家可以根据实际需要进行进一步的调整和优化,比如调整超参数、增加层数、使用更复杂的数据集等等。

模型分析

以上的这个案例中,我们使用Transformer模型进行IMDb电影评论数据集的情感分析。下面总结一下Transformer模型的优缺点,并将其与其他类似算法进行对比,讨论何时使用Transformer模型以及何时考虑其他算法。

Transformer模型的优缺点

优点
  1. 处理长依赖关系:Transformer模型能够有效地捕捉长距离依赖关系,因为它不受限于序列长度,这对处理长文本非常有利。

  2. 并行计算:由于没有递归结构,Transformer模型可以并行处理输入数据,这显著提高了训练速度。

  3. 高性能:Transformer模型在许多自然语言处理任务中表现出色,如机器翻译、文本生成和问答系统等。

  4. 扩展性好:Transformer模型的架构适用于各种规模的数据集和计算资源,可以通过增加层数和注意力头数来增强模型能力。

  5. 适应多种任务:预训练的Transformer模型(如BERT、GPT等)可以通过微调适应不同的下游任务,表现优异。

缺点
  1. 计算资源消耗大:Transformer模型需要大量的计算资源和内存,特别是在处理大规模数据集和长文本时。

  2. 训练时间长:尽管可以并行处理,但Transformer模型仍然需要较长的训练时间,尤其是大型模型。

  3. 数据需求量大:Transformer模型需要大量的训练数据来实现最佳性能,对于数据稀缺的任务可能不适用。

与其他算法的对比

RNN(循环神经网络)
  • 优点

  • 能够处理变长序列数据。

  • 模型参数较少,适合小规模数据集和较短序列。

  • 缺点

  • 难以捕捉长距离依赖关系。

  • 训练时无法并行,速度较慢。

  • 易于出现梯度消失和梯度爆炸问题。

LSTM(长短期记忆网络)和 GRU(门控循环单元)
  • 优点

  • 能够捕捉较长的依赖关系,比RNN效果好。

  • 在一定程度上缓解梯度消失问题。

  • 缺点

  • 仍然无法与Transformer的并行计算相比,训练速度较慢。

  • 模型复杂度较高,训练资源需求大。

CNN(卷积神经网络)
  • 优点

  • 可以捕捉局部特征,适合图像和一些文本任务。

  • 计算效率高,可以并行计算。

  • 缺点

  • 难以捕捉长距离依赖关系。

  • 通常需要固定大小的输入,对于变长序列不够灵活。

何时使用Transformer模型

  1. 处理长文本:Transformer模型在处理长文本时表现尤为出色,因为它能够捕捉长距离的依赖关系。

  2. 需要高性能:在追求模型性能和准确率的任务中,Transformer模型通常能提供最好的结果,特别是预训练模型(如BERT、GPT等)。

  3. 并行计算资源充足:如果你有足够的计算资源和内存,Transformer模型的并行计算优势可以显著提高训练效率。

最后

Transformer模型在处理自然语言处理任务中表现卓越,特别是在长文本、需要高准确率和有充足计算资源的情况下。尽管其计算资源需求高,训练时间长,但其高性能和并行计算优势使其成为许多NLP任务的首选。然而,对于资源有限、小规模数据集或实时性要求高的任务,传统的RNN、LSTM或轻量级的CNN可能更适合。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 17
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值