dropout防止overfitting

本文探讨了未使用Dropout时的TensorFlow神经网络训练过程,随后介绍如何通过加入Dropout防止过拟合,调整隐藏层神经元数量,并观察了训练效果。通过实例展示了加入Dropout后的模型在减少过拟合上的改进。
摘要由CSDN通过智能技术生成

未使用dropout时:

import tensorflow as tf
#使用sklearn之前要装scikit-learn这个包
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer

#load data
digits=load_digits()
X=digits.data #加载从0到9的digits date
y=digits.target #y变成binary,0-9共10个数字,如果y为1,则第二个数字为1
y=LabelBinarizer().fit_transform(y)
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=.3)

def add_layer(inputs,in_size,out_size,layer_name,activation_function=None):
    Weights=tf.Variable(tf.random_normal([in_size,out_size]))
    biases=tf.Variable(tf.zeros([1,out_size])+0.1)
    Wx_plus_b=tf.matmul(inputs,Weights)+biases

    if activation_function is None:
        outputs=Wx_plus_b
    else:
        outputs=activation_function(Wx_plus_b)
    tf.summary.histogram(layer_name+'outputs',outputs)#tensorboard必备
    return outputs

#define placeholder for inputs to network

xs=tf.placeholder(tf.float32,[None,64])#8*8
ys=tf.placeholder(tf.float32,[None,10])

#add output layer
l1=add_layer(xs,64,100,'l1',activation_function=tf.nn.tanh)#hidden layer
prediction=add_layer(l1,100,10,'l2',activation_function=tf.nn.softmax)#output layer

#the loss between prediction and the real date
cross_entropy=tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))
tf.summary.scalar('loss',cross_entropy)
train_step=tf.train.GradientDescentOptimizer(0.6).minimize(cross_entropy)

sess=tf.Session()
merged=tf.summary.merge_all()
train_writter=tf.summary.FileWriter('/pycharmfiles/tensorboard/logs/train',sess.graph)
test_writter=tf.summary.FileWriter('/pycharmfiles/tensorboard/logs/test',sess.graph)

sess.run(tf.global_variables_initializer())

for i in range(1000):
    sess.run(train_step,feed_dict={xs:X_train,ys:y_train})
    if i%50==0:
        #record loss
        train_result=sess.run(merged,feed_dict={xs:X_train,ys:y_train})
        test_result=sess.run(merged,feed_dict={xs:X_test,ys:y_test})
        train_writter.add_summary(train_result,i)
        test_writter.add_summary(test_result,i)

tensorboard的图:
在这里插入图片描述

加入dropout:
1

keep_prob=tf.placeholder(tf.float32)#保证多少的结果不被drop掉

2

 sess.run(train_step,feed_dict={xs:X_train,ys:y_train,keep_prob:0.5})#有0.5的概率被drop掉

3

train_result=sess.run(merged,feed_dict={xs:X_train,ys:y_train,keep_prob:1})#不drop任何东西
        test_result=sess.run(merged,feed_dict={xs:X_test,ys:y_test,keep_prob:1})

4

Wx_plus_b=tf.nn.dropout(Wx_plus_b,keep_prob)#更新Wx_plus_b,为drop原来的0.5

5
由于隐藏层神经元数太多,可能会导致输出离散值,因此更改隐藏层的神经元数为50

l1=add_layer(xs,64,50,'l1',activation_function=tf.nn.tanh)#hidden layer 
prediction=add_layer(l1,50,10,'l2',activation_function=tf.nn.softmax)#output layer

结果:
在这里插入图片描述
可以看到train和test基本重叠,没有Overfitting

注意:

  1. 隐藏层神经元较少的时候会出现欠拟合,直接不收敛
  2. 如果dropout后还是不理想可以降低学习效率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值