UNet 改进(11):结合Inception模块和CBAM注意力机制

在计算机视觉领域,UNet因其优异的性能在图像分割任务中广受欢迎。

本文将详细介绍一个改进版的UNet架构,它融合了Inception模块和CBAM(Convolutional Block Attention Module)注意力机制,显著提升了模型的特征提取能力。

架构概述

这个改进的UNet架构名为UNetWithInceptionCBAM,主要包含以下几个关键组件:

  1. 基础双卷积模块:标准的UNet卷积块

  2. Inception模块:多尺度特征提取

  3. CBAM注意力机制:通道和空间注意力

  4. 下采样和上采样路径:标准的UNet结构

核心组件详解

1. CBAM注意力模块

CBAM(Convolutional Block Attention M

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值