本文内容:在不同位置添加StripCGLU
目录
论文简介
尽管遥感目标检测发展迅速,但检测高纵横比目标仍具挑战性。本文表明,大条带卷积是遥感目标检测的良好特征表示学习器,能够很好地检测各种纵横比的目标。基于大条带卷积,我们构建了一个名为 Strip R-CNN 的新网络架构,该架构简单、高效且强大。与近期利用方形大核卷积的遥感目标检测器不同,我们的 Strip R-CNN 利用骨干网络 StripNet 中的顺序正交大条带卷积来捕获空间信息。此外,我们通过解耦检测头并在我们的条带头中为定位分支配备条带卷积来提高遥感目标检测器的定位能力。在多个基准数据集(例如 DOTA、FAIR1M、HRSC2016 和 DIOR)上的大量实验表明,我们的 Strip R-CNN 能够显著改进先前的工作。特别是,我们的 30M 模型在 DOTA-v1.0 上实现了 82.75% 的 mAP,创下了新的最