【论文阅读】【点云处理】pointnet++的改进

本文介绍了PATs(Point Attention Transformers)在点云处理中的应用,通过改进PointNet++的FPS部分,利用GSA(Group Shuffle Attention)和GSS(Gumbel Subset Sampling)提高点选择的准确性。GSA借助自注意力机制增强点特征,而GSS用Gumbel Softmax替代FPS进行下采样。实验表明,这些改进在ModelNet40数据集上取得了显著效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PATs: Point Attention Transformers

论文:Modeling Point Clouds with Self-Attention and Gumbel Subset Sampling

2019CVPR,上海交大MoE实验室和华为诺亚方舟实验室

本文主要改进了PointNet++中的FPS的部分,使得选取的点更能处理外点,将down sampling的点选取在attention score大的点上。很形象的对比如下图:
在这里插入图片描述
接下来就介绍一下本文提出的两个模块。

GSA:Group Shuffle Attention

这一块内容主要就是自注意力机制,注意力机制的详细内容可以参考另一篇博客

本文使用了Scaled Dot-Product attention(在上面的博客也提到了),具体的GSA的详见论文中的公式(7)(8)和(11)。

对于点x,对应的特征向量是y,通过y=GSA(f)的变换,得到了点的新的特征向量y。在GSA过程中,参考(7)和(8),仍然是使用f内部的信息,与MLP其实作用是

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值