前言
这篇论文介绍了一种名为 PointCNN 的方法,旨在从点云(point cloud)数据中学习特征。传统卷积神经网络(CNN)在处理规则网格数据(如图像)时非常有效,但由于点云是无序且不规则的,直接在其上应用卷积操作会导致形状信息丢失,并对点的排列顺序敏感。
为了解决这一问题,论文提出了一种 X-Conv 操作。该方法通过学习一种 X-transformation 来重新排列点云中的点并加权输入特征。然后,将典型的卷积操作应用于转换后的特征。这种方法将传统的 CNN 扩展到点云特征学习,并命名为 PointCNN。
实验表明,PointCNN 在多个基准数据集上达到了与当前最先进方法相当甚至更好的性能。这些数据集包括 3D 形状分类(如 ModelNet40)、分割任务(如 ShapeNet Parts 和 ScanNet),以及 2D 草图分类任务(如 TU-Berli