YOLOV8改进:TripletAttention | 即插即用的轻量级注意力机制

本文介绍了如何在YOLOV8中整合TripletAttention注意力机制,作为轻量级的改进手段。通过在ultralytics/nn/modules/block.py和block.py中添加和修改模块,以及在tasks.py中注册新模块,实现了TripletAttention的有效融合。实验证明,这种改进可以提升模型性能,特别是在ImageNet-1k的图像分类和目标检测任务上。同时,文章讨论了注意事项和可能遇到的问题,提供了YAML配置建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。
2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。

3.涨点效果:TripletAttention,轻量级注意力机制,实现有效涨点!



论文地址

由于注意机制具有在通道或空间位置之间建立相互依赖关系的能力,近年来在各种计算机视觉任务中得到了广泛的研究和应用。在本文中,我们研究了轻量级但有效的注意机制,并提出了三重注意,这是一种利用三分支结构捕获跨维交互来计算注意权重的新方法。对于输入张量,三元组注意力通过旋转操作建立维度间依赖关系,然后进行残差变换

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AICurator

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值