语义分割使许多吸引人的现实世界的应用,如计算摄影,自动驾驶等。然而,巨大的计算成本使得在硬件有限的边缘设备上部署最先进的语义分割模型成为可能资源困难。这项工作提出了高效率,a一种新的语义分割模型设备语义的轻量级多尺度关注分割。不像以前的语义分割模型依赖于大量的自关注,硬件效率低下为了获得良好的性能,我们的轻量级多尺度注意力在轻量级和硬件效率的前提下实现了全局接受场和多尺度学习(语义分割模型的两个关键特征)操作。因此,在流行的基准数据集上,与以前最先进的语义分割模型相比,EfficientViT提供了显著的性能提升在移动平台上显著提速。没有cityscape的性能损失,我们的EfficientViT提供了到15倍和9.3倍的移动延迟减少比SegFormer和SegNeXt。保持相同的移动在ADE20K上,EfficientViT提供了+7.4 mIoU增益SegNeXt。