1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。
2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。
3.涨点效果:动态蛇形卷积,实现有效涨点!

精确分割拓扑管状结构;如血管和道路,是各种至关重要的现场,确保下游的准确性和效率任务。然而,许多因素使任务复杂化,包括薄的局部结构和可变的全局形态。在这项工作中,我们注意到管状结构的特殊并使用这些知识来指导我们的DSCNet同时在三个阶段增强感知:特征提取,特征融合和损失约束。首先,我们提议一种动态蛇形卷积,通过自适应聚焦细长和弯曲的局部结构,准确捕获管状结构的特征。随后,我们提出了多视图特征融合策略来补充在fea真实融合
本文探讨了YOLOV8的改进方案,引入了动态蛇形卷积以增强对细长结构的捕捉,并提出多视角特征融合策略,结合连续性拓扑约束损失,提升管状结构分割的准确性和连续性。详细步骤包括代码实现和配置文件更新。
订阅专栏 解锁全文
8435

被折叠的 条评论
为什么被折叠?



