HNHN: Hypergraph Networks with Hyperedge Neurons个人笔记

本文提出HNHN框架,一种超图卷积网络,包含非线性激活函数和灵活的归一化策略,提高真实世界数据集的分类准确性和速度。通过cliqueexpansion和stareexpansion处理超图,对比现有技术,HNHN在超节点和超边表示学习上取得优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

        Hypergraph|超图 为许多真实世界的数据集提供了自然表示。本文提出了一个用于超图表示学习的新框架HNHN。HNHN是一种超图卷积网络,具有应用于超节点和超边的非线性激活函数,并结合了一种归一化方案,该方案可以根据数据集灵活调整高基数超边和高阶顶点的重要性。与现有技术的方法相比,HNHN在真实世界数据集上的分类精度和速度方面的改进了性能。

引入

        许多真实世界的数据都可以用图形表示,因为数据是以对象和对象之间关系的形式出现的。在许多情况下,一个关系可以连接两个以上的对象。超图可以自然地表示这样的结构。以论文作者图为例,其中的顶点表示论文。由于一个作者可以写多篇论文,所以在超图中把作者表示为超边是很自然的。本文的目标是用一种新的超图卷积算法来学习这种结构化数据的表示。

        超边非线性问题:允许网络学习单个超边的非线性行为,这存在于许多真实世界的数据集中,具体来说就是:训练一个网络,其中一个用X_V表示超节点,另一个用X_E表示超边。然后,可以将超节点超边关联矩阵用于卷积步骤。非线性函数σ同时作用于超节点和超边。

        标准化问题:有多种不同的标准,取决于如何加权不同的顶点,比如;拉普拉斯算子D^{-\frac{1}{2}}LD^{-\frac{1}{2}},规范化表示如何对大阶顶点与小阶顶点进行加权的选择。这一选择应该根据权重较大的顶点在特定数据测试中是否能提供更好的准确性来做出——例如,在一个社交网络上,拥有大量连接的用户可能是重要且有影响力的个人,他们的活动对预测有用,而在另一个网络上,他们可能是随机建立连接的机器人。

本文的主要贡献:提出一种超图卷积网络,该网络具有应用于超节点和超边的非线性激活函数,以及一种更灵活的归一化方法。

模型和分析:

        定义超图H由超节点的集合V和超边的集合E组成,其中每个超边本身就是一组超节点。定义关联矩阵A,如果第i个超节点在第j个超边中,则A(i,j)=1,否则=0,通过关联矩阵A的卷积来更新超节点表示X_V和超边表示X_E

       

σ是非线性激活函数,W和b分别是权重矩阵和偏置矩阵。

Ni是点vi的边领域,Nj是ej的点领域

clique and star expansions的关系

        为了将图卷积应用于超图问题,必须从超图H构建图G,有两种主要的方法clique and star expansions

        第一种,clique expansion:通过将每个超边e用在其顶点集上的clique替换生成一个图,这种方法的一个小变种是生成一个加权图,其中clique上的每条边的权重等于k的某个固定函数,对于变体G_C,我们用每个顶点到自身的一条边加上clique来替换每条超边

        第二种,star expansion:生成一个图G*,它的点集是V\bigcup E,如果在超节点v和超边e之间有条边而且在超节点与超节点或者超边与超边之间没有边,这样可以使图形具有双向性。(假设超边e=\left \{ v_1,v_2.....v_k \right \},那么子集\left \{ e,v_1,v_2....v_k \right \}就是星形图)

如果对超节点和超边使用相同的权重,设置 W_E=W_ Vb_E=b_V,HNHN方法就等同于在星形扩展 G∗ 上图卷积

如果去掉非线性激活函数 σ,只考虑线性映射,那么HNHN方法就等同于在clique扩展的图G_C上图卷积。 

缺陷:

        clique expansion:可能导致信息丢失,在同一个顶点集上可能有两个具有相同clique expansion的不同超图。

        star expansion:它对待超节点和超边是一样的。在许多数据集中,超节点和超边描述了完全不同的对象,因此权重应该不同。

结论:

        G_CG*的光谱理论(spectral theory)差不多复杂或简单。

Hypergraph normalization超图规范化

        一种常见的消息传递方案是通过消息池后邻域的基数来规范化消息。在将消息从超边传递到超节点的情况下,这可以表示为

这确保了,对于形如ReLU这样的无界激活函数σ,当vi具有大程度时,特征向量不会从一层到下一层快速增长,而对于有界激活函数,σ的输入不会太大(因为有界激活功能在最大值上近似恒定,而这会导致梯度消失)。 

 缺点:无论程度如何,每个超边的贡献都被赋予相同的权重

改进:在对入射到给定超节点的超边求和之前,我们根据实参数α,用其阶的幂对每个超边的贡献进行加权

 当α>0时,与之前的归一化相比,度高的超边的贡献增加,而如果α<0,它们的贡献减少。α被视为针对给定数据集要优化的超参数。

算法细节:

        输入:超节点和超边之间的关联关系、超节点的输入特征向量以及超节点子集的目标标签。

        步骤:从超图结构中,提取邻域信息来计算归一化因子。

                  然后HNHN超图卷积的每一层将信号从超节点中继到超边

                  然后,HNHN超图卷积的每一层都将信号从超节点中继到超边,具有非线性和特定于节点的归一化,再然后类似地从超边到超节点

                  最后,再基于学习节点表示的预测标签和给定的目标标签之间使用交叉熵计算损失。

Dropout被添加到任何不是最后一个的卷积层中,以减轻过拟合,ReLU被用作非线性激活函数

模型训练及参数设置

        使用Adam优化器,每100次迭代,学习率会成倍降低0.51倍,HNHN性能相对于超参数变化是鲁棒的。超参数:0.3 dropout率;0.04 初始学习率;200训练epochs,PubMed数据集的隐藏维度是800,其他数据集为400

        数据预处理:

                本文用的基本上是co-citation和co-authorship两种类型的数据集,并利用这两种数据集构建超图, 具体来说就是,对于co-aturhorship数据集,如果一些超节点对应的文章是某条超边对应的作者写的,那么这些超节点就属于这条超边;而对于co-citation数据集,如果一些超节点对应的文章被超边e引用,那么这些超节点属于超边e。文章没提这个e的物理意义

                co-citation例子:CiteSeer 、PubMed

                co-authorship例子:Cora、DBLP

        超图预测任务:

                超节点预测:给定一个超图和一小组超节点上的节点标签,该任务是预测剩余超节点上的标签。预测和目标标签之间的交叉熵是损失函数,如参数设置所提到的,本文使用Adam优化器和一个学习率调度器,它以固定的时间间隔成倍地降低学习率。超参数α和β通过对训练集的5重交叉验证来确定。(α和β分别是用来给超边和顶点加权的参数),可调整的超参数还包括(层数、dropout rate)想要获得accuracy,最多需要两个卷积层(原文说at most two layers are needed,一般说这个不是至少要两个吗?不太懂)

                超图预测任务实验结果如上,HNHN在数据集上优于最先进的技术,同时获得有竞争力的计时结果。

        减少特征维度(feature dimensions)的节点预测:

                feature dimensions到底是特征维度还是特征尺寸,不太懂。

                本文在使用潜在语义分析[Journal of the American Society for Information Science的方法]减少输入特征维度之后,实验了节点预测,结果是训练速度更快,但是准确率下降了,这个实验表明HNHN适用于计算资源有限的情况

        边特征表示学习Edge representations learning:

                与依赖于超边扩展的方法相比,HNHN的优势在于它为每个超边生成一个专用的向量表示,因此,HNHN学习表示可以容易地适用于下游边缘相关的任务,例如边预测。因为HNHN中的超边-超节点具有对称性,在超节点和超边都代表论文的co-citation数据集CiteSeer上,当给定15%的超边标签(并且没有超节点标签)时,超边分类精度为62:79±1:43。这与64:76 1:63的超节点预测精度相当

normalization parameters标准化参数的影响:

        归一化参数α控制不同基数的超边之间存在多少权重差异。当α > 0时,大尺寸的超边被赋予较大的权重;当α < 0时,越小的超边权重越大。β也一样,不过β是影响超节点的。

下面使用来交周报的,不用看:

1 Title 

        HNHN: Hypergraph Networks with Hyperedge Neurons(Yihe Dong,Will Sawin,Yoshua Bengio)ICML 2020

2 Conclusion

        Hypergraph provides a natural representation of many real-world datasets. This paper propose a new framework for hypergraph representation learning, HNHN. HNHN is a hypergraph convolutional network with nonlinear activation functions applied to supernodes and hyperedges, combined with a normalization scheme that flexibly adjusts the importance of high-cardinality hyperedges and higher-order vertices according to the dataset. Compared with the methods of the prior art, HNHN offers improved performance in terms of classification accuracy and speed on real-world datasets.

3 Good Sentence

        1、This choice should be made according to whether weighting vertices of large degree highly gives better accuracy on a particular dataest - e.g. on one social network, users with a large number of connections may be important and influential individuals whose activity is useful for prediction, while on another, they may be bots who make connections at random.(Why the normalization should be done and how to normalize)

        2、Compared to approaches that rely on hyperedge expansions, HNHN has the advantage in that it produces one dedicated vector representation per hyperedge. This differs from prior works that expand out a hyperedge into multiple nodes or select a representative subset of hypernodes for each hyperedge.(the difference of HNHN and previous works)

        3、By allowing a varying hyperpameter α, we can choose a weighting for hyperedges that is appropriate for a given dataset.(the affection of the parameters)

### 回答1: 超图神经网络是一种新兴的神经网络模型,它可以处理高维、非线性、非欧几里德空间的数据。与传统的图神经网络不同,超图神经网络可以处理多个节点之间的高阶关系,这些关系可以是任意形式的子集。超图神经网络已经在图像识别、自然语言处理、推荐系统等领域取得了很好的效果。 ### 回答2: 超图神经网络(hypergraph neural networks)是一种新兴的神经网络模型,它在传统的图神经网络(Graph Neural Networks, GNNs)的基础上进行了扩展和改进。超图神经网络是一种可以处理超图数据的神经网络,这种网络可以在节点和超边之间建立联系,从而更好地处理超边特征。 在传统图神经网络中,节点之间通过边进行联系,而在超图神经网络中,节点和超边之间建立直接联系,从而可以更好地处理超边和超级节点。超图神经网络可以处理包含多种类型节点和多个类型的边的复杂网络,这些网络在实际应用中非常常见。 使用超图神经网络进行任务处理的过程通常包括两个步骤:超图结构学习和节点/边特征学习。超图结构学习包括超图建模和标准化;节点/边特征学习包括节点表示学习和边表示学习。超图神经网络已经被应用于许多领域,例如计算机视觉、自然语言处理、社交网络分析等。 在超图神经网络的发展过程中,一些问题仍需要解决。例如,如何选择合适的超边和节点特征工程方法来提取重要的信息并处理噪声?如何处理超图中的异构信息,如节点类型和超边类型之间的关系?未来研究将在这些方面展开,以改进超图神经网络的性能和适应性。 ### 回答3: 超图神经网络(hypergraph neural networks)是最近发展起来的一种新型神经网络模型,其应用范围已经逐渐拓展到图像处理、自然语言处理、社交网络分析等领域。 跟传统的图神经网络不同,超图神经网络不仅考虑节点之间的关系,还考虑边的组合方式,即超边(hyperedge)的存在。一个hyperedge可以由多个节点组成,同时每个节点可以属于多个hyperedge。超图神经网络的主要特点在于它可以学习到不同节点之间的高阶关系,通过hyperedge的方式更好地描述现实场景中的物理现象,比如物质间的相互作用、语句中的语义关系等。 尽管超图神经网络的应用具有很高的潜力,但是还是存在着一些挑战。比如如何设计高效的超图构建算法和相应的优化算法,如何解决超图的信息传递问题,以及如何根据不同任务的特性对超图神经网络进行适当的结构设计和超参数选择。 总之,超图神经网络是一种重要的神经网络模型,能够有效地处理现实场景中存在的高阶关系,对于实际应用中的图像处理、自然语言处理、社交网络分析等领域具有广泛的应用前景。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值