匈牙利匹配算法

一 什么是匈牙利匹配算法

匈牙利匹配(Hungarian Algorithm),也称为最小成本匹配或科奇-劳斯算法,是一种经典的线性规划方法,用于解决一种特殊的配对问题,即在一个二维的成本矩阵中,找到一种配对方式使得总的匹配成本最小,同时保证每个元素都恰好被匹配一次。这个问题通常出现在任务分配、员工排班等需要优化资源分配的情况中。
算法的核心思想是通过逐步构建一个分配表,通过一系列的交换操作将成本矩阵转化为一个“完全匹配”的状态,即每个行和列都只有一个非零元素。这个过程利用了所谓的“循环取消”技术,通过比较当前分配与最优分配的差异,找到一个交换可以最小化总成本。

二 一个关于匈牙利算法的例子

假设有如下一个实际问题。这里有n份工作任务,有n个工人,每个工人完成工作所需的成本不同(可以时间成本,可以是经济成本),但是由于每个工人在同一时间只能做一个工作,每个工作因此只能分配给一个工人,需要给出一个算法,求出总的花费成本最低。
在这里插入图片描述

下面介绍其实现流程:

(1)创建cost matrix
在这里插入图片描述

那么上面这个表格或者说是矩阵,的第(i,j)个元素的值就对应着第i个工人分配给他

  • 8
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
匈牙利算法匈牙利匹配算法)是一种解决二分图最大匹配问题的算法。它的基本思想是从左侧的未匹配顶点开始,依次尝试与其右侧的顶点匹配,如果匹配成功,则继续处理下一个未匹配顶点,否则尝试为当前顶点寻找另一个可行的匹配。 以下是一份基于 MATLAB 的匈牙利算法实现代码,用于求解给定二分图的最大匹配: ```matlab function [match, maxMatch] = hungarianAlgorithm(BipartiteGraph) % BipartiteGraph: 二分图的邻接矩阵表示 % match: 匹配结果(左侧顶点对应的右侧顶点编号,未匹配则为 0) % maxMatch: 最大匹配数 n = size(BipartiteGraph, 1); % 左侧顶点数 m = size(BipartiteGraph, 2); % 右侧顶点数 match = zeros(1, n); % 匹配结果 maxMatch = 0; % 最大匹配数 for i = 1:n % 初始化标记数组 S = false(1, n); T = false(1, m); P = zeros(1, m); % 右侧顶点的前驱顶点编号 AugPath = zeros(1, n); % 增广路径 % 寻找未匹配的左侧顶点 if match(i) == 0 % 在未匹配的左侧顶点中查找增广路径 if dfs(i) % 更新匹配结果 maxMatch = maxMatch + 1; j = i; while j ~= 0 match(j) = AugPath(j); j = P(AugPath(j)); end end end end % 深度优先搜索查找增广路径 function isPathFound = dfs(u) S(u) = true; for v = 1:m if BipartiteGraph(u, v) && ~T(v) T(v) = true; if P(v) == 0 || dfs(P(v)) P(v) = u; AugPath(u) = v; isPathFound = true; return end end end isPathFound = false; end end ``` 该算法的时间复杂度为 O(n^3),其中 n 为图中顶点的数量。在实际应用中,可以通过一些优化技巧(如启发式算法、Kuhn-Munkres 算法)来提高算法的效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BILLY BILLY

你的奖励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值