组合优化算法:匈牙利匹配

前言

相关介绍

匈牙利算法是一种在多项式时间内求解任务分配问题的组合优化算法,并推动了后来的原始对偶方法。1955年,库恩(W.W.Kuhn)利用匈牙利数学家康尼格(D.Kőnig)的一个定理构造了这个解法,故称为匈牙利法。

匈牙利匹配(Hungarian Algorithm)是一种经典的组合优化算法,主要用于解决二分图(Bipartite Graph)的最大匹配问题。在二分图中,节点被划分为两个不相交的集合(通常称为左集合和右集合),匹配是指在左右集合之间建立边的连接关系,使得每条边恰好连接一个左集合的节点和一个右集合的节点,而最大匹配是指在满足匹配条件的情况下,找到匹配边数最多的方案。

匈牙利算法的关键在于寻找一种增广路径(Augmenting Path),增广路径是指在已有的匹配基础上,通过改变某些边的匹配状态,能够使得匹配的数量增加一条的路径。算法通过不断查找并增广路径来逐步提升匹配的数量,直到找不到增广路径为止,此时得到的就是最大匹配。

匈牙利算法在许多实际问题中有广泛应用,例如任务调度、广告投放、图像分割中的数据关联等。在计算机科学和运筹学领域,它是解决特定优化问题的重要工具,以其在多项式时间内能找到最优解而著称。

匈牙利匹配算法(Hungarian Algorithm)是一种用于解决二分图(Bipartite Graph)最大匹配问题的著名算法,由匈牙利数学家Dénes Kőnig和美国数学家哈罗德·库恩等人发展而来。该算法在多项式时间内可以找到无权二分图的最大匹配,以及加权二分图的完美匹配(即最小权重完美匹配,通常称为Kuhn-Munkres算法或KM算法)。

二分图最大匹配问题定义:

在二分图G=(U, V, E)中,U和V是两个不相交的顶点集合,E是连接U和V顶点的边集合。最大匹配是指在G中选取最多数量的边,使得这些边彼此之间不共享端点。

匈牙利匹配算法概述:

  1. 初匹配:开始时,可以任意选取一个匹配(即若干条不相交的边)作为初始匹配。

  2. 寻找增广路径:在当前匹配的基础上,通过检查残余网络(Residual Network)寻找增广路径。增广路径是从未匹配的U顶点出发,经过若干条边到达未匹配的V顶点的路径,路径上的边交替属于匹配和非匹配。

  3. 增广路径操作:如果找到了增广路径,可以通过反转路径上匹配边的状态(即原来匹配的变为未匹配,原来未匹配的变为匹配)来增加匹配边的数量。

  4. 重复上述过程:直到在残余网络中再也找不到增广路径为止,此时的匹配就是最大匹配。

步骤细化:

  • 构建代价矩阵(仅限于加权匹配问题):将二分图中的边赋予权重,形成一个矩阵,行对应U集合,列对应V集合,矩阵元素表示U中的顶点与V中的顶点相连的边的权重。

  • 行和列操作(例如,霍尔定理操作):通过对代价矩阵进行一系列行和列的减法和除法操作,确保每行和每列都有一个零元素,同时保证这些零元素构成的最大匹配。

  • 完美匹配(对于加权匹配问题):在修改后的代价矩阵中,通过某种确定的方式找到一组零元素,这些元素指示了最大权重匹配,即完美匹配。

时间复杂度:

无权二分图的最大匹配问题,匈牙利算法可以在O(n3)的时间内解决;对于加权二分图的完美匹配问题,即Kuhn-Munkres算法,其时间复杂度也为O(n3)。

应用场景:

匈牙利匹配算法广泛应用于各种实际问题,如任务分配、招聘面试安排、广告投放匹配等场景,都可以抽象为二分图最大匹配问题来解决。

匈牙利匹配

匈牙利匹配算法(Hungarian Algorithm)主要用于解决二分图中的最大匹配问题。让我们通过一个实例来演示算法的运作:

示例问题:

设有以下5名男生(M1, M2, M3, M4, M5)和5名女生(F1, F2, F3, F4, F5),他们对对方的喜好程度用一个评分矩阵表示,评分越高表示越喜欢。现在我们要找到一个稳定的婚姻匹配方案,使得尽可能多的男生和女生互相满意。

评分矩阵如下:

F1F2F3F4F5
M132140
M205321
M321403
M410254
M543012

解决步骤:

  1. 行和列规范化

    • 首先,我们需要对评分矩阵进行行最小值减法,使得每行至少有一个0。
    • 然后,对新矩阵的每一列进行同样的操作,减去该列的最小值,确保每列至少有一个0。
  2. 寻找零元素

    • 经过规范化后,我们将得到一个新的矩阵,其中存在一些零元素。
    • 寻找所有的增广路径(即从一个未匹配的男学生出发,经过一系列水平和垂直的0元素,到达一个未匹配的女学生)。
  3. 增广路径操作

    • 若找到增广路径,沿着这条路径,改变匹配状态(未匹配变匹配,匹配变未匹配),并在匹配集合中加入新的匹配对,同时删除旧的匹配对。
    • 重复寻找并应用增广路径,直到无法找到新的增广路径为止。
  4. 最终匹配

    • 当找不到增广路径时,现有的匹配即为最大匹配。

在这个例子中,经过匈牙利匹配算法的执行,最终会得到一个最大匹配的方案,比如 M1-F4, M2-F2, M3-F5, M4-F1, M5-F3 这样的匹配组合,使得整体评分最高。

实际执行算法时,一般会使用更加详细的步骤和技巧,例如匈牙利算法的完整实现会涉及矩阵的行和列的标号,以及霍尔(Hall)定理的运用等。但以上简化的实例足以展示算法的基本思路。在实际编程实现中,通常会利用迭代的方法和数据结构来高效地找到和应用增广路径。

代码示例

在Python中,我们可以使用scipy.optimize.linear_sum_assignment函数来实现匈牙利匹配算法。首先,我们需要安装scipy库(如果尚未安装,可以使用pip install scipy命令进行安装)。以下是如何使用该函数解决上述实例问题:

import numpy as np
from scipy.optimize import linear_sum_assignment

# 示例评分矩阵
cost_matrix = np.array([
    [3, 2, 1, 4, 0],
    [0, 5, 3, 2, 1],
    [2, 1, 4, 0, 3],
    [1, 0, 2, 5, 4],
    [4, 3, 0, 1, 2]
])

# 注意:linear_sum_assignment函数寻找的是最小成本匹配,所以我们需要取负值来转换为最大匹配问题
row_ind, col_ind = linear_sum_assignment(-cost_matrix)

# 打印匹配结果
print(f"匹配结果:")
for row, col in zip(row_ind, col_ind):
    print(f"M{row+1} - F{col+1}")

# 计算总匹配分数
total_cost = -np.sum(cost_matrix[row_ind, col_ind])
print(f"\n总匹配分数:{total_cost}")
'''
匹配结果:
M1 - F4
M2 - F2
M3 - F3
M4 - F5
M5 - F1
'''

运行这段代码后,将会输出匹配结果及总匹配分数。这里的匹配结果是以数组形式给出的,例如M1 - F4表示男生M1与女生F4匹配。总匹配分数是所有匹配对的评分之和,由于我们取了成本矩阵的负值,所以总匹配分数实际上是最大匹配问题的匹配值。

注意,linear_sum_assignment函数返回的row_indcol_ind分别是男生和女生列表的索引,它们对应着匹配的配对。

  • 12
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
匈牙利算法匈牙利匹配算法)是一种解决二分图最大匹配问题的算法。它的基本思想是从左侧的未匹配顶点开始,依次尝试与其右侧的顶点匹配,如果匹配成功,则继续处理下一个未匹配顶点,否则尝试为当前顶点寻找另一个可行的匹配。 以下是一份基于 MATLAB 的匈牙利算法实现代码,用于求解给定二分图的最大匹配: ```matlab function [match, maxMatch] = hungarianAlgorithm(BipartiteGraph) % BipartiteGraph: 二分图的邻接矩阵表示 % match: 匹配结果(左侧顶点对应的右侧顶点编号,未匹配则为 0) % maxMatch: 最大匹配数 n = size(BipartiteGraph, 1); % 左侧顶点数 m = size(BipartiteGraph, 2); % 右侧顶点数 match = zeros(1, n); % 匹配结果 maxMatch = 0; % 最大匹配数 for i = 1:n % 初始化标记数组 S = false(1, n); T = false(1, m); P = zeros(1, m); % 右侧顶点的前驱顶点编号 AugPath = zeros(1, n); % 增广路径 % 寻找未匹配的左侧顶点 if match(i) == 0 % 在未匹配的左侧顶点中查找增广路径 if dfs(i) % 更新匹配结果 maxMatch = maxMatch + 1; j = i; while j ~= 0 match(j) = AugPath(j); j = P(AugPath(j)); end end end end % 深度优先搜索查找增广路径 function isPathFound = dfs(u) S(u) = true; for v = 1:m if BipartiteGraph(u, v) && ~T(v) T(v) = true; if P(v) == 0 || dfs(P(v)) P(v) = u; AugPath(u) = v; isPathFound = true; return end end end isPathFound = false; end end ``` 该算法的时间复杂度为 O(n^3),其中 n 为图中顶点的数量。在实际应用中,可以通过一些优化技巧(如启发式算法、Kuhn-Munkres 算法)来提高算法的效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FriendshipT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值