Pyg中的GraphSage的SAGEConv的学习,理解NeighborSampler采样器的sizes在图神经网络上的作用(分层采样)

本文通过学习B站Up背包2004的GraphSage教程,探讨了NeighborSampler的独特采样方法,包括指定大小的层次采样,以及如何将邻接节点的属性聚合到目标节点的过程,特别提到了SAGEConv在处理这类图卷积操作中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文如有不妥之处,敬请读者在评论区指正,作者将及时修正。

在学习B站Up‘背包2004’的GraphSage学习视频中(强烈推荐但需要基础

视频号:BV1za4y167hx),我遇到了一些不理解的地方,下面是学习笔记;
在这里插入图片描述
在这里插入图片描述

NeighborSampler的采样很特殊,理解采样sizes = [2, 3];

第一层采样:对于一个节点‘0’对外采样2个节点‘3’、‘4’,然后得到节点集[‘0’、‘3’、‘4’]。

第二层采样:对于节点集[‘0’、‘3’、‘4’]中的每一个节点对外随机采样3个节点,其中可能重复,可能采样到自身节点,如图所示;
在这里插入图片描述

在这里插入图片描述
这里的采样规则是为了Graph的聚合操作(这里的聚合很像image的卷积操作),如采样-聚合01图中的16、17、3的节点属性将聚合到4节点自身上。使用pyg的SAGEConv算子进行操作;
在这里插入图片描述
视频里面的参数;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值