READ-2309 ARIBA: Towards Accurate and Robust Identification of Backdoor Attacks

READ-2309 ARIBA: Towards Accurate and Robust Identification of Backdoor Attacks in Federated Learning

论文名称ARIBA: Towards Accurate and Robust Identification of Backdoor Attacks in Federated Learning
作者Yuxi Mi, Jihong Guan, Shuigeng Zhou
来源arXiv 2022
领域Machine Learning - Federal learning - Security - backdoor attack
问题已有的防御后门攻击的方法存在以下不足:1.需要先验知识或经验阈值;2.依赖于数据IID的假设;3.容易被攻击者躲避;4.许多方法依赖于模型的总体特征,但是这些特征对于精确识别攻击者是粗糙的
方法由于CNN的filter可以辨别后门,因此对filter进行前处理,获得获得以零为中心梯度,然后将其输入无监督异常检测算法,计算每个客户端的不正常分数
创新通过filter检测后门攻击

阅读记录

一、攻击模型
  1. 攻击者能力
    (1)攻击者可以控制多个恶意客户端,获取客户端的本地数据并操控训练过程,修改本地更新
    (2)攻击者不能访问控制其他良性客户端
    (3)攻击者知道服务器执行的所有可能的防御方式
    (4)假设攻击者在任何时候都可以被服务器选中
    (5)恶意客户端之间可以共享攻击目标和后门
  2. 攻击者目标:backdoor + scaling attack
    当全局模型收敛时,良性客户端的模型与全局模型相似,在二者抵消后,只剩下恶意客户端的更新。
    在这里插入图片描述
  3. 攻击场景
    在这里插入图片描述
    (1)有目标后门:攻击者持有一个或多个带有错误标签的数据集。如果同一组图像在推断时间再次出现,全局模型将进行错误分类。
    (2)像素形式后门:攻击者在原始训练图像上覆盖由单个或一组明亮像素组成的图案。如果该图案出现,将错误分类。
    (3)语义后门:相比像素形式后门,攻击者没有添加人工图案,而是选择了一种自然出现的特征
二、ARIBA
  1. 出发点
    (1)发现:经过前处理前后,CNN中良性客户端和恶意客户端的filter存在显著差别差别。由此可见,通过检查模型权重可以很好的发现后门攻击。
    在这里插入图片描述
    (2)合理性:在累计梯度后,恶意客户端的模型接近于后门目标,更新方向与良性客户端不同,尽管恶意客户端可以隐藏其攻击,但是差异仍然存在,最终体现在模型权重上

在这里插入图片描述
2. 总框架
在这里插入图片描述
(1)服务器收集客户端更新
(2)对模型参数进行预处理,以获得filter的离散形式
(3)收集filter,通过无监督的异常检测算法检测异常filter
(4)基于检测出的异常filter个数,计算每个恶意客户端的异常分数,将最可疑的客户端视为攻击者并移除
(5)使用剩余更新进行聚合

  • 算法
    在这里插入图片描述
三、具体步骤
  1. 前处理
    (1)获取以0为中心的梯度
    ①计算客户端参数与第t轮全局参数的差距
    在这里插入图片描述
    ②计算客户端参数与原始第t+1轮全局参数的差距,以更好的区分良性客户端和恶意客户端
    在这里插入图片描述
    (2)获取第一个卷积层的卷积核
    在这里插入图片描述
    由此图可以看出,在不同攻击能力的情况下,难以通过离散梯度分辨恶意客户端。
  2. 检测恶意卷积核
    (1)相比普通的无监督恶意检测算法,本文要求:
    ①由于检测单一的卷积核可能无法识别一个隐蔽的攻击者,因此本文将客户端所有卷积核作为一个整体,计算正常和不正常的卷积核数,允许检测算法错误判断一个filter。在可以准确区分恶意客户端和良性客户端的前提下,有一定容错性。
    ②强调算法效率。在现实场景下,客户端较多且卷积核数量巨大的情况下,检测开销较大。
    (2)使用马氏距离进行异常检测
    在这里插入图片描述
    ①计算每个客户端每个卷积核的马氏距离
  • 链接:https://zhuanlan.zhihu.com/p/46626607
  • 定义:马氏距离修正了欧式距离中各个维度尺度不一致且相关的问题
  • 原理:将变量按照主成分进行旋转,让维度间相互独立,然后进行标准化,让维度同分布
  • 关系:Σ是多维随机变量的协方差矩阵,μ为样本均值,如果协方差矩阵是单位向量,也就是各维度独立同分布,马氏距离就变成了欧氏距离。
    ②根据阈值γ判断卷积核是否异常
    在这里插入图片描述
  1. 检测恶意客户端
    (1)计算每个客户端的异常分数:异常分数=客户端的异常卷积核的个数
    在这里插入图片描述
    (2)去除异常客户端
    在这里插入图片描述

①当异常分数过高时:异常卷积核越多,更新的方向越不同,越有可能是恶意客户端
②当异常分数过低时:当恶意客户端想要隐藏攻击时,攻击目标和隐藏目标可能相互抵消,卷积核更加分散,更不容易被识别成异常卷积核


总结

与其他利用相似度检测恶意客户端的防御方式相比,ARIBA检测的是更容易体现恶意目标的卷积核,而非整体模型,大大减少了计算成本。
在阅读过程中觉得ARIBA判断异常客户端的方式有点牵强,并且在实验部分,作者选择的检验防御能力的指标不是很好,没有办法很好的看出ARIBA实际的性能。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值