【算法导论笔记】握手定理(图论基本定理)

本文介绍了图论中的握手定理,即无向图和有向图中顶点度数之和等于边数的两倍。对于无向图,每个边贡献两个度数;对于有向图,入度之和等于出度之和。通过举例说明,帮助理解这一基本概念在图的结构分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

握手定理:

 图中度数的总和是边数的二倍

顶点度数:从顶点出去的边数的个数

对于无向图和有向图,度数之和都为边数的2倍

对于有向图:入度之和等于出度,所以入度之和等于出度之和等于边数

理解:

对于以下无向图,绿点个数表示度之和

每加入一条边总会多两个绿点,

所以,度之和为边的2倍

 

对于以下有向图,绿点表示从顶点射出,黄点表示射入顶点,绿点的个数表示入度之和,黄点个数表示出度之和

每加入一条边,总会多一对绿点和黄点

所以,入度之和等于出度之和等于边的2倍。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值