资源分配优化:基于线性规划的数学建模与实战案例

订阅专栏后华数杯和9月数学建模国赛会分享思路及Matlab代码

目录

引言

资源分配优化模型介绍

使用Matlab进行资源分配优化建模

实战案例:资源分配优化

结论


引言

资源分配优化是在有限的资源约束下,将资源分配到不同的任务或项目中以最大化效益或满足特定目标的过程。数学建模是研究资源分配优化的有效方法之一,其中线性规划是常用的技术。在本篇博客中,我们将介绍线性规划的基本原理,演示如何使用Matlab进行模型建立和求解,并通过一个实战案例来展示模型的应用和分析。

资源分配优化模型介绍

资源分配优化模型通常涉及以下几个方面:

  1. 资源类型:包括人力资源、物质资
资源配置是每个出版社每年必须进行的重要决策,直接关系到出版社的当年经济效益和长远发展战略。本文从A出版社往年各课程市场竞争的强度、实际的销售量、人力资源、分社最低限的角度综合分析了各课程2006年分得书号数情况。本文先建立了各课程的市场竞争强势模型,将问卷调查中的A出版社在群众心目中的地位、市场占有率、满意度程度进行数据处理,再将归一化后的值进行加权求和得到五年的市场竞争强度值,根据预测里面的加权平均思想将五年的数据处理得到2006年的市场竞争强度值,大体上 A出版社的60号课程的强势度最高,3号课程的强势度为最低,计算机类、经管类的书平均在市场中没有什么竞争,英语类中个别课程在市场中占有优势,但是个别的在市场中处于劣势。实际销售情况我们定义了各课程单位书号的实际销售量 来求解,通过对2001到2005年的同种课程的 进行整体函数拟合,得到通过检验的 关于时间的二次函数,从而求得2006年的各课程的单位书号的销售量。在求得前两个模型的基础上,建立双目标规划模型,以整体强势度最大、整体销售量最大为目标函数,满足总书号数为500,各分社分得的书号在人力资源的限制范围内,各课程分得的书号数要大于申请数的一半为约束条件,求得了各门课分得的书号数见表4.3。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值