2024 年“认证杯”数学建模 D题 AI 绘画带来的挑战

该博客探讨了2024年‘认证杯’数学建模比赛D题——如何通过检测几何不合理性和视觉特征,利用Python和OpenCV、scikit-learn分析AI绘画作品。文章提供了从几何规则出发检测不合理性及构建机器学习模型的思路和示例代码。
摘要由CSDN通过智能技术生成

专栏内含有ABCD四题思路和代码

问题一

当从几何角度来审视 AI 绘画时,我们可以关注一些常见的几何原理和规则,例如平行线、垂直线、对称性等。下面是一个思路和示例代码,用于检测可能存在的几何不合理性:

思路:

  1. 从图片中提取关键的几何元素,如直线、角度、比例关系等。
  2. 根据这些几何元素,检查是否存在不符合常规几何规则的情况,比如平行线不平行、垂直线不垂直等。
  3. 如果存在不合理的几何特征,那么可能是由AI绘图软件生成的图片。

示例代码(使用Python和OpenCV):

import cv2
import numpy as np

def detect_geometric_inconsistencies(image_path):
    # 读取图片
    image = cv2.imread(image_path)
    # 将图片转换为灰度图
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # 使用Canny边缘检测算法检测边缘
    edges = cv2.Canny(gray, 50, 150, apertureSize=3)
    # 使用霍夫线变换检测直线
    lines = cv2.HoughLines(edges, 1, np.pi/180, 100)

    if l
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值