引言
在建筑工地、矿山等高风险环境中,安全帽是保护工人头部安全的基本防护装备。确保工人佩戴安全帽是预防事故、保障人身安全的重要措施。传统的安全帽检测通常依赖人工巡查,不仅效率低下,还容易出现漏检和误判。随着深度学习和计算机视觉技术的发展,基于深度学习的安全帽检测系统应运而生。本文将详细介绍一个基于YOLOv10深度学习模型的安全帽检测系统,包括数据集准备、模型训练、用户界面设计和系统实现等内容。
目录
一、项目概述
1.1 研究背景
安全帽检测作为智能安全防护的重要一环,在近年来得到了广泛关注。许多企业开始采用机器视觉技术来提高安全检查的效率与准确性。YOLO(You Only Look Once)系列目标检测算法因其高效性和准确性而被广泛应用于实时物体检测任务中。
1.2 系统功能
该安全帽检测系统主要具有以下功能:
- 实时摄像头监控工人佩戴安全帽的情况。
- 自动识别是否佩戴安全帽,并输出检测结果。
- 可视化检测结果,支持记录与导出检测数据。 <