yolov8/9/10/11模型在工地安全帽检测中的应用【代码+数据集+python环境+GUI系统】

yolov8/9/10/11模型在工地安全帽检测中的应用【代码+数据集+python环境+GUI系统】

yolov8/9/10/11模型在工地安全帽检测中的应用【代码+数据集+python环境+GUI系统】

背景意义

在建筑工地、矿山、工厂等工业生产环境中,安全帽是保护工人头部免受伤害的重要劳保工具。然而,由于工人安全意识不足或企业监督不到位,未佩戴安全帽而引发的安全事故时有发生。因此,对工人进行安全帽佩戴状况的实时检测成为保障安全生产的关键环节。传统的人工监控方式不仅消耗大量人力,而且容易存在漏检的风险。同时,随着工地规模的扩大和复杂性的增加,人工监控的效率和覆盖面也受到了限制。

基于计算机视觉的安全帽检测技术能够实现对工地内所有摄像头的实时监控,大大提高了安全检查的效率和覆盖面。通过自动识别和检测工人是否佩戴安全帽,系统能够及时发现并纠正违规行为,从而有效预防安全事故的发生。传统的安全检查方式需要大量的人力投入,而基于计算机视觉的安全帽检测技术则能够自动化地完成这一任务,从而降低了企业的人力成本。通过实时监测和记录工人的安全帽佩戴情况,系统能够为管理者提供有力的数据支持。这些数据可以用于分析工人的安全行为习惯,制定针对性的管理措施,进一步提升工地的安全管理水平。

促进智慧工地建设:随着工业化进程的加快和智能化技术的普及,智慧工地已经成为未来工地管理的重要趋势。基于计算机视觉的安全帽检测技术作为智慧工地的重要组成部分,能够推动工地管理的智能化和自动化水平提升,为工地的安全生产提供更加全面和高效的保障。

YOLO算法在工地安全帽检测中的应用

YOLO算法的核心思想是将目标检测问题转化为一个回归问题,即直接在输出层回归出目标边界框的位置和类别。从YOLOv1到YOLOv8,该算法经历了多次迭代和优化,不断提高了检测速度和精度。其中,YOLOv8作为最新版本的算法,在保持高速度的同时,进一步提升了检测的准确性。

YOLO算法通过卷积神经网络(CNN)对图像进行特征提取,然后利用回归算法预测手部关键点的位置。在手部关键点检测中,关键点通常包括手指关节、手腕等部位的坐标信息。优势在于:速度快:YOLO算法采用单次检测机制,减少了计算量,实现了快速检测;精度高:通过深度学习方法对图像进行特征提取和关键点预测,提高了检测的准确性;易于扩展:YOLO算法的开源性和模块化设计使得用户可以轻松地进行扩展和改进,以适应不同的应用场景。

YOLO算法原理

YOLO(You Only Look Once)关键点检测的算法原理主要基于YOLO目标检测算法进行改进,其核心思想是将关键点检测问题转化为一个回归问题。

1. 网络结构

基础网络:YOLO关键点检测算法通常采用卷积神经网络(CNN)作为基础网络,用于提取图像的特征。

关键点回归分支:在网络的最后一层添加关键点的回归分支,用于预测关键点的位置。这一分支通过训练学习,能够输出每个目标的关键点坐标。

2. 数据标注

在训练阶段,需要对每个目标标注其关键点的位置。这通常通过人工标注的方式完成,将关键点的坐标标注在图像上。这些标注数据将作为训练网络的输入,帮助网络学习如何预测关键点位置。

3. 损失函数

YOLO关键点检测算法通常采用平方差损失函数来度量预测值与真实值之间的差距。损失函数包括目标位置的损失和关键点位置的损失。通过最小化损失函数,可以优化网络参数,提高关键点检测的准确率。

4. 预测过程

在测试阶段,通过网络的前向传播即可得到目标的关键点位置。这一过程是实时的,且具有较高的检测速度。

5. 非极大值抑制(NMS)

在得到多个预测结果后,YOLO关键点检测算法通常采用非极大值抑制(NMS)来抑制重叠的检测结果,只保留置信度最高的检测结果。这有助于减少误检和漏检的情况。

7. 优缺点

优点:

实时性较好:通过一次前向传播即可实现目标的检测和关键点的预测。

准确率较高:相对于传统方法,YOLO关键点检测算法在预测关键点位置时具有较高的准确率。

缺点:

对小目标的检测效果不佳:由于小目标的关键点难以精确定位,因此容易出现漏检情况。

对遮挡目标的检测效果不佳:遮挡会对关键点的检测造成困难,导致定位不准确。

数据集介绍

数据集主要类别为:

示例图片如下:

将数据集划分为训练集、测试集以及验证:

设置数据集在yolov11中的配置文件为:

​​​​​​​代码示例与操作步骤

设置训练、测试、推理的参数,进行编写代码:

训练代码:

分别运行对应的代码可以进行训练、测试、单张图片推理。

    设计对应的GUI界面如下:

安装使用说明

确保代码所在的路径不能出现中文!!!!!!!

确保代码所在的路径不能出现中文!!!!!!!

确保代码所在的路径不能出现中文!!!!!!!

为了方便使用本代码,将python的虚拟环境一并附带在压缩包内,运行对应的Windows的bat脚本可以执行对应的代码。

运行该脚本可以直接执行GUI代码,进入上述界面。不需要再次配置python的环境。

联系方式

我们非常乐意根据您的特定需求提供高质量的定制化开发服务。为了确保项目的顺利进行和最终交付的质量,我们将依据项目的复杂性和工作量来评估并收取相应的服务费用,欢迎私信联系我哈~~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

霍夫曼vx_helloworld7352

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值