1. 引言
建筑工地是高风险的工作环境,工人、机器和各种建筑材料混杂在一起,容易发生安全事故。事故的发生不仅会导致人员伤亡,还会造成财产损失、项目延误以及法律责任。因此,建筑工地的安全管理至关重要,实时监控和安全隐患的检测是确保工地安全运营的关键。
近年来,随着人工智能、深度学习和计算机视觉技术的发展,利用无人机、摄像头等设备监控建筑工地的安全隐患已成为一种趋势。YOLO(You Only Look Once)作为一种高效的目标检测算法,被广泛应用于实时物体检测任务中,包括建筑工地的安全监控。
本文将详细介绍如何使用YOLOv5、YOLOv8和YOLOv10等深度学习目标检测模型,结合建筑工地安全监控的实际需求,设计一个能够实时检测建筑工地安全隐患的系统。通过此系统,可以有效识别建筑工地中的危险行为,如未佩戴安全帽、工人进入危险区域、设备故障等。此外,我们还将设计一个简单的用户界面,方便安全管理人员实时查看监控结果,并采取相应措施。
2. YOLO算法概述
2.1 YOLO简介
YOLO(You Only Look Once)是一种基于卷积神经网络(CNN)的目标检测算法,最早由Joseph Redmon等人提出。与传统的目标