1. 引言
人脸检测是计算机视觉领域的一个重要研究方向,广泛应用于安防监控、人脸识别、智能交互等场景。随着深度学习技术的快速发展,基于深度学习的人脸检测算法在精度和效率上取得了显著提升。YOLOv11作为YOLO系列的最新版本,以其高效的目标检测能力成为人脸检测任务的热门选择。
本文将详细介绍如何利用YOLOv11构建一个日常场景下的人脸检测系统,涵盖从数据集准备、模型训练到PySide6界面设计的完整流程,并提供完整的Python代码和参考数据集。
2. YOLOv11简介
YOLOv11是YOLO(You Only Look Once)系列的最新版本,继承了YOLOv5的高效性和灵活性,并在模型结构、训练策略和检测精度上进行了进一步优化。YOLOv11的主要特点包括:
- 高效性:能够在保持高精度的同时实现实时检测。
- 灵活性:支持多种输入分辨率和模型大小,适用于不同的硬件环境。
- 易用性:提供了丰富的预训练模型和训练工具,便于快速上手。
YOLOv11的核心思想是将目标检测问题转化为回归问题,通过单次前向传播即可完成目标的定位和分类。