[特殊字符] 基于YOLOv10的非洲象与亚洲象识别系统:使用Elephant Dataset实现智能检测与可视化UI

📌 一、项目背景与意义

1.1 为什么要进行象类识别?

非洲象和亚洲象是地球上最具代表性的动物之一,它们在生态系统中扮演着重要角色。然而,象类由于象牙贸易、栖息地破坏等因素而濒临灭绝。借助人工智能技术对非洲象与亚洲象进行实时检测与识别,有助于:

  • 反偷猎监控系统部署
  • 野生动物生态研究
  • 保护区自动化巡检
  • 教育科普用途

因此,构建一个基于YOLOv10的象类识别系统,配合友好的可视化UI,具有极高的科研与实际价值。


🗂️ 二、数据集准备与预处理

2.1 数据集选择与下载

本项目推荐使用两个合并的数据源:

  1. Kaggle – Elephant Detection Dataset
    链接:https://www.kaggle.com/datasets/andrewmvd/elephant-detection
    内容:数百张象类图片,带有YOLO格式标注。
  2. iWildCam Elephant Subset(适用于学术研究)<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值