一、引言
人群计数(Crowd Counting)是计算机视觉领域中的一项挑战性任务,广泛应用于安防监控、智能交通、公共安全等领域。随着深度学习技术的飞速发展,基于卷积神经网络(CNN)的目标检测算法已被广泛应用于此任务中。近年来,YOLO(You Only Look Once)系列模型在目标检测领域表现出了卓越的性能,并逐步扩展到包括人群计数等任务。
人群计数任务的核心目标是准确计算出给定图像或视频帧中的人数,尤其是在拥挤的环境中,计数精度至关重要。本文将介绍如何结合YOLOv8实现人群计数,并设计一个简单的UI界面,展示如何通过YOLOv8模型进行实时的人群计数。
我们将从人群计数的基本原理出发,讨论如何利用YOLOv8进行人群检测与计数,介绍相关的数据集,并给出完整的代码实现。
二、人群计数任务概述
人群计数任务通常由两部分组成:
- 目标检测:首先需要检测图像或视频中的每个人,获得他们的位置(通常是矩形边框)。
- 人数计数:在检测到所有目标之后,统计图像中人的数量,这一过程在实际应用中面临诸如遮挡、密集人群等挑战。
人群计数的挑战主要体现在以