简介
随着深度学习技术的发展,计算机视觉领域的目标检测技术也得到了广泛应用。在众多目标检测任务中,行人检测在人群密集的环境中尤为重要,尤其是在智能监控、自动驾驶、公共安全等领域。人群中的行人检测具有独特的挑战,因为人群中行人之间的遮挡、姿态变化以及不同的尺度会使得检测任务变得更加复杂。
本篇博客将介绍如何使用YOLOv10(You Only Look Once,版本10)模型来进行CrowdHuman数据集上的行人检测任务。CrowdHuman数据集是一个专门用于人群检测和行人标注的大规模数据集,适用于密集人群中的目标检测问题。我们将使用YOLOv10来实现这一目标,并提供完整的代码示例以及详细的步骤说明。
CrowdHuman数据集概述
CrowdHuman数据集由来自多个场景的图像组成,特别适用于人群密集场景中的行人检测。该数据集的特点包括:
- 数据规模:CrowdHuman数据集包含约15,000张图像,标注了多达35万人群的位置信息。每张图像的目标数量不固定,有的图像中有多个行人,有的图像中则有少数行人。
- 数据标注:该数据集的标注方式非