1. 引言
目标检测(Object Detection)是计算机视觉领域的重要任务,旨在从图像或视频中识别出多个物体并标注其位置。随着深度学习技术的发展,YOLO(You Only Look Once)系列模型已经成为目标检测领域的一个重要标杆。YOLOv10作为YOLO系列的最新版本,凭借其高效性和精确性,在处理大规模图像和视频数据时表现出了极大的优势。
本博客将介绍如何使用YOLOv10进行视频中的目标检测,重点是识别视频中出现的三类目标:行人、车辆和动物。我们将使用一个包含这些类别的视频数据集进行训练,并构建一个基于YOLOv10的目标检测模型,最终在视频流中实现实时检测。本文将提供详细的步骤、代码和参考数据集。
2. 数据集概述
本项目将使用一个包含三类目标的数据集:行人(Pedestrians)、车辆(Vehicles)和动物(Animals)。该数据集是用于目标检测的标准视频数据集,包含来自多个场景的视频片段,适用于训练和评估目标检测模型。
2.1 数据集类别
该数据集包括以下三个主要类别:
- 行人(Pedestrians) :包括各种形态和姿势