1. 项目背景与意义
随着智能安防、智能监控、人机交互等领域的快速发展,人脸识别与跟踪技术受到了广泛关注。它不仅在安防监控系统中用于身份认证与异常检测,也在智能门禁、自动考勤和营销系统中发挥重要作用。
传统的人脸检测多依赖Haar级联或基于特征的检测方法,准确率和鲁棒性有限。深度学习方法,尤其是YOLOv8等先进目标检测框架,实现了实时且高准确度的人脸检测。同时,结合人脸识别(身份验证)和多目标跟踪,可以构建功能完备的智能人脸分析系统。
本文将介绍如何利用YOLOv8实现高效人脸检测,结合经典人脸识别技术及多目标跟踪算法,打造一个带UI界面的完整人脸识别与跟踪系统。
2. 技术路线与系统架构
2.1 技术选型
- 人脸检测:YOLOv8目标检测模型(自定义训练或基于公开人脸数据微调)
- 人脸识别:基于预训练的FaceNet或ArcFace嵌入模型
- 跟踪算法:Deep SORT跟踪算法,结合检测和外观特征完成多目标跟踪
- UI界面:PyQt5实现桌面端应用
- 数据处理与辅助库