1. 项目背景与意义
肠道息肉是消化系统常见的良性病变,部分息肉具有癌变潜能,早期准确识别和定位息肉对于预防结直肠癌具有重要意义。传统内窥镜医生依赖视觉经验进行诊断,效率和准确性受限。
深度学习在医学图像分析的快速发展为息肉自动检测提供了新机遇,能辅助医生提升检测准确率、减少漏诊。
本项目基于最新YOLOv8模型,利用公开的Kvasir-SEG内窥镜息肉图像分割数据集,构建端到端息肉检测系统,并实现了便捷的图形界面供临床应用演示。
2. 内窥镜息肉检测技术现状
- 早期多采用传统图像处理技术和机器学习方法,效果有限。
- 基于CNN的语义分割方法(如UNet、DeepLab)广泛应用息肉分割任务。
- 目标检测方法(如Faster R-CNN、YOLO系列)更适合实时检测与定位息肉。
- YOLOv8融合了Transformer模块与轻量级骨干网络,实现了精准且高效的息肉检测。
3. Kvasir-SEG数据集详解
3.1 数据集简介
- 由挪威科技大学发布
- 包含1000多张内窥镜图像及对应息肉的二值分割掩码
- 图像分辨率多样,主要为高清内窥镜拍摄