EndoPolypDetector:基于YOLOv8和Kvasir-SEG数据集的内窥镜息肉检测系统

1. 项目背景与意义

肠道息肉是消化系统常见的良性病变,部分息肉具有癌变潜能,早期准确识别和定位息肉对于预防结直肠癌具有重要意义。传统内窥镜医生依赖视觉经验进行诊断,效率和准确性受限。

深度学习在医学图像分析的快速发展为息肉自动检测提供了新机遇,能辅助医生提升检测准确率、减少漏诊。

本项目基于最新YOLOv8模型,利用公开的Kvasir-SEG内窥镜息肉图像分割数据集,构建端到端息肉检测系统,并实现了便捷的图形界面供临床应用演示。


2. 内窥镜息肉检测技术现状

  • 早期多采用传统图像处理技术和机器学习方法,效果有限。
  • 基于CNN的语义分割方法(如UNet、DeepLab)广泛应用息肉分割任务。
  • 目标检测方法(如Faster R-CNN、YOLO系列)更适合实时检测与定位息肉。
  • YOLOv8融合了Transformer模块与轻量级骨干网络,实现了精准且高效的息肉检测。

3. Kvasir-SEG数据集详解

3.1 数据集简介

  • 由挪威科技大学发布
  • 包含1000多张内窥镜图像及对应息肉的二值分割掩码
  • 图像分辨率多样,主要为高清内窥镜拍摄
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值