基于YOLOv12的火灾与烟雾检测系统:从数据集构建到UI界面实现

1. 引言

火灾是威胁人类生命财产安全的主要灾害之一,快速准确的火灾检测对于减少损失至关重要。传统的火灾检测方法主要依赖烟雾探测器和温度传感器,但这些方法存在响应慢、误报率高、覆盖范围有限等缺点。近年来,基于深度学习的计算机视觉技术在火灾和烟雾检测领域展现出巨大潜力。

本文将详细介绍如何使用YOLOv12模型构建一个完整的火灾和烟雾检测系统,包括数据集准备、模型训练、性能评估以及用户界面开发。我们使用的数据集包括FireNet和Smoke Detection Dataset,这两个数据集在火灾检测领域被广泛使用。

2. 相关数据集介绍

2.1 FireNet数据集

FireNet是一个专门为火灾检测研究构建的数据集,包含以下特点:

  • 图像数量:1,000张高分辨率火灾图像
  • 标注类型:边界框标注,包含"fire"类别
  • 场景多样性:室内、室外、白天、夜晚等多种场景
  • 挑战性:包含火焰大小不一、遮挡、复杂背景等情况

2.2 Smoke Detection Dataset

Smoke Detection Dataset专注于烟雾检测,主要特点包括:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值