1. 引言
火灾是威胁人类生命财产安全的主要灾害之一,快速准确的火灾检测对于减少损失至关重要。传统的火灾检测方法主要依赖烟雾探测器和温度传感器,但这些方法存在响应慢、误报率高、覆盖范围有限等缺点。近年来,基于深度学习的计算机视觉技术在火灾和烟雾检测领域展现出巨大潜力。
本文将详细介绍如何使用YOLOv12模型构建一个完整的火灾和烟雾检测系统,包括数据集准备、模型训练、性能评估以及用户界面开发。我们使用的数据集包括FireNet和Smoke Detection Dataset,这两个数据集在火灾检测领域被广泛使用。
2. 相关数据集介绍
2.1 FireNet数据集
FireNet是一个专门为火灾检测研究构建的数据集,包含以下特点:
- 图像数量:1,000张高分辨率火灾图像
- 标注类型:边界框标注,包含"fire"类别
- 场景多样性:室内、室外、白天、夜晚等多种场景
- 挑战性:包含火焰大小不一、遮挡、复杂背景等情况
2.2 Smoke Detection Dataset
Smoke Detection Dataset专注于烟雾检测,主要特点包括: